Документ подписан простой электронной подписью Информация о владельце:

ФИО: Лужанин Владимий ГРИК ФРЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: Ректор федеральное государственное бюджетное образовательное учреждение высшего образования дата подписания: 11.03.2025 12:03:35 Уникальный программный ключ: «Пермская государственная фармацевтическая академия» d56ba45a9b6e5c64a319e2c5ae3bb Министерства здравоохранения Российской Федерации

Кафедра общей и органической химии (наименование кафедры)						
УТВЕРЖДЕНА						
решением кафедры						
Протокол от «22» июня 2023 г.						
№ 11						

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ОП.07 Органическая химия

33.02.01 Фармация

(код, наименование направления подготовки (специальности)

Среднее профессиональное образование						
(направленность(и) (профиль (и)/специализация(ии)						
Фармацевт						
(квалификация)						
Очная						
(форма(ы) обучения)						

Год набора - 2024

Авторы-составители:

к. фарм. наук, доц. кафедры общей и органической химии

Лиманский Е.С.

заведующий кафедрой общей и органической химии

д. хим. наук, профессор.

Гейн В.Л.

СОДЕРЖАНИЕ

1.	Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы	4
2.	Объем и место дисциплины в структуре образовательной программы	4
3.	Содержание и структура дисциплины	5
4.	Фонд оценочных средств по дисциплине	8
5.	Методические материалы для обучающихся по освоению дисциплины	12
6.	Учебная литература и ресурсы информационно-телекоммуникационной сети "Интернет", для обучающихся по дисциплине	12
7.	Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы	13

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения программы

- 1.1. Дисциплина ОП.07 «Органическая химия» обеспечивает овладение следующими компетенциями:
- ОК 01. Выбирать способы решения задач профессиональной деятельности, применительно к различным контекстам.
- ОК 02. Осуществлять поиск, анализ и интерпретацию информации, необходимой для выполнения задач профессиональной деятельности.
- ОК 04. Работать в коллективе и команде, эффективно взаимодействовать с коллегами, руководством, клиентами.
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, эффективно действовать в чрезвычайных ситуациях.
 - ОК 09. Использовать информационные технологии в профессиональной деятельности.
- ПК 1.11. Соблюдать правила санитарно-гигиенического режима, охраны труда, техники безопасности и противопожарной безопасности, порядок действия при чрезвычайных ситуациях; формируется данной дисциплиной частично.
- ПК 2.5. Соблюдать правила санитарно-гигиенического режима, охраны труда, техники безопасности и противопожарной безопасности, порядок действия при чрезвычайных ситуациях; формируется данной дисциплиной частично.
 - 1.2. В результате освоения дисциплины у обучающихся должны быть

сформированы умения:

доказывать с помощью химических реакций химические свойства веществ органической природы, в том числе лекарственных; идентифицировать органические вещества, в том числе лекарственные, по физико-химическим свойствам; классифицировать органические вещества по кислотно-основным свойствам;

сформированы знания:

теории А.М. Бутлерова;

органических соединений как основы лекарственных средств;

номенклатуры ИЮПАК органических соединений;

строения и реакционной способности органических соединений;

способов получения органических соединений.

2. Объем и место дисциплины в структуре ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина ОП.07 «Органическая химия» относится к профессиональному циклу программы подготовки специалистов среднего звена, изучается во 2 семестре первого курса и составляет 78 часов.

Количество академических часов в контакте с преподавателем -52 ч, из них: практических занятий -28 ч, лекций -24 ч, самостоятельная работа -14 ч.

Промежуточная аттестация проводится в виде экзамена.

3. Содержание и структура дисциплины

3.1. Структура дисциплины

	Наименование тем (разделов),	Объем дисциплины (модуля), час.				Форма текущего
№ п/п		Всего	Конт ра обуча препод по	гактная абота ощихся с цавателем видам іх занятий	СР	контроля успеваемо сти ¹ , промежут очной аттестаци
Раздел I.	Теоретические основы органической химии	9	2	4	3	и КР, С, Т
Тема 1.1.	Предмет и задачи органической химии. Теория строения А.М. Бутлерова. Классификация и номенклатура органических соединений.	2	-	1	1	Т
Тема 1.2.	Взаимное влияние атомов в молекулах органических соединений.	3	1	1	1	KP
Тема 1.3.	Кислотность и основность органических соединений.	4	1	2	1	KP, C
Раздел II.	Углеводороды	15	6	6	3	КР, С
Тема 2.1.	Насыщенные углеводороды.	5	2	2	1	КР, С
Тема 2.2.	Ненасыщенные углеводороды.	5	2	2	1	КР, С
Тема 2.3.	Ароматические углеводороды.	5	2	2	1	КР, С
Раздел III.	Гомофункциональные и геторофункциональные соединения.	25	10	10	5	KP, C
Тема 3.1.	Спирты. Фенолы. Простые эфиры.	5	2	2	1	КР, С
Тема 3.2.	Амины. Диазо- и азосоединения.	5	2	2	1	КР, С
Тема 3.3.	Альдегиды. Кетоны.	5	2	2	1	КР, С
Тема 3.4.	Карбоновые кислоты и их производные.	5	2	2	1	-
Тема 3.5.	Гетерофункциональные кислоты.	5	2	2	1	КР, С
Раздел IV.	Природные органические соединения.	17	6	8	3	KP, C
Тема 4.1.	Углеводы.	5	2	2	1	KP, C
Тема 4.2.	Жиры.	5	2	2	1	KP, C
Тема 4.3.	Гетероциклические соединения.	5	2	2	1	КР, С

	Наименование тем (разделов),	Объем дисциплины (модуля), час.				Форма текущего
№ п/п		Всего	ра обучан препод по	гактная обота ощихся с авателем видам іх занятий	СР	контроля успеваемо сти ¹ , промежут очной аттестаци
			Л	П3		И
Тема 4.4.	Определение функциональных групп органических соединений лекарственных средств.	2	-	2	-	УИР
Промежуточная аттестация						экзамен
Всего:		66	24	28	14	

Примечание:

1 — формы текущего контроля успеваемости: тест (T), контрольная работа (KP), собеседование (C), учебно-исследовательская работа (YUP).

3.2. Содержание дисциплины

Раздел І. Теоретические основы органической химии

Тема 1.1. Предмет органической химии. Теория строения А.М. Бутлерова. Классификация органических соединений по строению углеводородного скелета и по функциональным группам. Основные классы органических соединений. Рациональная номенклатура. Основные принципы современной номенклатуры органических соединений (номенклатура ИЮПАК). Номенклатура углеводородов. Знакомство с техникой безопасности при работе в химической лаборатории и планами работ.

Тема 1.2. Взаимное влияние атомов в молекулах органических соединений.

Строение атома углерода, σ - и π -связей. Индуктивный эффект (+J, -J). Электронодонорные и электроноакцепторные заместители. Сопряженные системы с открытой и замкнутой цепью (p, π и π , π -сопряжение). Мезомерный эффект (+M, -M). Способы передачи +M, -M.

Тема 1.3. Кислотно-основные свойства органических соединений.

Определение кислотности по Бренстеду и Льюису. Константа диссоциации (K_a) и ее отрицательный логарифм (pK_a). Типы органических кислот.О-H-, S-H-, N-H-,C-H-кислоты.

Основность по Бренстеду и Льюису. Константа диссоциации (K_B) и ее отрицательный логарифм (pK_B). Константа кислотности сопряженной кислоты pK_{BH}^{+} .

Факторы, влияющие на силу оснований. Типы органических оснований. Аммониевые, оксониевые и π-основания.

Раздел II. Углеводороды

Тема 2.1. Предельные углеводороды.

Гомологический ряд алканов. Номенклатура. Физические свойства. Способы получения. Реакции замещения. Региоселективность. Понятие о цепных реакциях.

Номенклатура циклоалканов. Способы получения. Реакции присоединения, характерные для малых циклов: гидрирование, галогенирование и гидрогалогенирование. Реакции замещения в пиклопентане и пиклогексане.

Тема 2.2. Непредельные углеводороды.

Структурная и геометрическая (*цис-, транс-, E, Z*) изомерии алкенов. Реакции присоединения. Правило Марковникова в этиленовых углеводородах. Реакции присоединения в ацетиленовых углеводородах. Правило Эльтекова. Реакции окисления алкенов и алкинов. Кислотные свойства алкинов.

Тема 2.3. Ароматические углеводороды.

Понятие ароматичности. Общие критерии ароматичности. Электронное строение бензола. Реакции замещения по кольцу: галогенирование, нитрование, сульфирование, алкилирование, ацилирование. Влияние электронодонорных и электроноакцепторных заместителей на направление и скорость замещения по кольцу. Согласованная и несогласованная ориентация заместителей

Раздел III. Гомофункциональные соединения и гетерофункциональные соединения.

Тема 3.1. Спирты. Фенолы. Простые эфиры.

Строение, номенклатура одноатомных и многоатомных спиртов, фенолов. Кислотно-основные свойства спиртов, фенолов. Реакции замещения, дегидратации, окисления. Реакции замещения по кольцу, окисления. Качественные реакции на спирты, фенолы. Номенклатура простых эфиров, способы получения, свойства.

Тема 3.2. Амины. Диазо- и азосоединения.

Строение, номенклатура, способы получения аминов. Основные свойства алифатических и ароматических аминов. Нуклеофильные свойства аминов (образование *N*-замещенных амидов из производных кислот). Качественные реакции на амины: реакции с азотистой кислотой, бензолсульфохлоридом (проба Гинзбурга); образование оснований Шиффа; изонитрильная проба; образование пикратов третичных аминов. Реакции электрофильного замещения в ароматических аминах (нитрование, галогенирование, сульфирование).

Тема 3.3. Альдегиды и кетоны.

Номенклатура оксосоединений. Электронное строение карбонильной группы. Реакции нуклеофильного присоединения (A_N) по карбонильной группе. Реакции присоединения—отщепления. Альдольная и кротоновая конденсации. Реакции электрофильного замещения в ароматических альдегидах. Окисление альдегидов и кетонов.

Тема 3.4. Карбоновые кислоты и их производные.

Электронное строение карбоксильной группы и карбоксилат-аниона как р- π -сопряженных систем. Кислотные свойства карбоновых кислот. Влияние природы радикала на силу кислот. Реакции замещения для карбоновых кислот и их функциональных производных. Роль кислотного и основного катализа. Номенклатура дикарбоновых кислот. Способы получения дикарбоновых кислот. Реакции с нуклеофильными реагентами: образование сложных эфиров, ангидридов, галогенангидридов и амидов. Декарбоксилирование и образование циклических ангидридов и имидов.

Тема 3.5. Гетерофункциональные кислоты.

Гидроксикислоты. Молочная кислота, винная кислота. Химические свойства гидроксикислот: реакции отщепления воды; получение и возможность гидролиза простых и сложных эфиров; образование амидов и хлорангидридов.

Оксокарбоновые кислоты. Пировиноградная кислота. Химические свойства оксокислот.

Аминокислоты. Классификация. Амфотерность α-аминокислот. Химические свойства α-аминокислот. Качественные реакции α-аминокислот и пептидов.

Раздел IV. Природные органические соединения.

Тема 4.1. Углеводы.

Строение, номенклатура, оптическая изомерия моносахаридов. Открытые и циклические формы. α, β-Аномеры. Химические свойства. *О-, N-* и *S-*гликозиды. Получение, свойства, примеры. Качественные реакции на пентозы и гексозы. Строение и номенклатура ди- и полисахаридов. Сравнительная характеристика реакционной способности восстанавливающих и невосстанавливающих дисахаридов. Крахмал. Гликоген. Целлюлоза.

Тема 4.2. Жиры.

Триацилглицерины (жиры, масла). Высшие жирные кислоты как структурные компоненты триацилглицеринов (пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая). (гидролиз, Химические свойства триацилглицеринов гидрогенизация, окисление). Аналитические характеристики жиров и масел (иодное число, число омыления). Воск, строение. Высшие одноатомные спирты (цетиловый, мирициловый). Пчелиный воск. Спермацет. Твины. Применение в фармации. Фосфатидная кислота. Фосфолипиды (фосфатидилколамины, фосфатидилхолины). Кислотный и щелочной гидролиз фосфолипидов.

Тема 4.3. Гетероциклические соединения.

Ароматический характер пятичленных гетероциклических соединений с одним гетероатомом (пиррол, фуран, тиофен). Реакции электрофильного замещения (S_E) — нитрование, сульфирование, галогенирование, алкилирование и ацилирование. Ориентации замещения. Ацидофобность фурана и пиррола. Строение и ароматичность пиразола, имидазола и тиазола. Реакции электрофильного замещения, ориентация замещения. Ароматический характер азинов. Классификация. Строение. Ароматичность. Пиррольный и пиридиновый атомы азота. Кислотноосновные свойства. Пурин и его производные. Таутомерия пиримидиновых оснований (урацил, тимин, цитозин).

Тема 4.4. Определение функциональных групп органических соединений лекарственных средств.

4. Фонд оценочных средств по дисциплине

- 4.1. Формы и материалы текущего контроля.
- 4.1.1. В ходе реализации дисциплины ОП.07 Органическая химия используются следующие формы текущего контроля успеваемости обучающихся: тест, контрольные работы, собеседование, учебно-исследовательская работа.
 - 4.1.2. Материалы текущего контроля успеваемости.

Пример заданий **теста** «Предмет органической химии. Теория строения А.М. Бутлерова».

БИЛЕТ №1

1. CH₃-CH₂-CH=CH-CH₂-CH₃

В) 5-метил-3-гексен

А) 3-метил-4-гептен Б) 5-метил-3-гептен

Г) 3-этил-3-гексен Д) 5-этил-3-гексен

2. $(CH_3)_2CH$ -CH- CH_2 - CH_2 - CH_3

А) этилпропилбутилметан

Б) этилизопропилвтор-бутилметан

В) этилизопропилбутилметан

Г) изопропилбутилэтилметан

Д) этилпропилизобутилметан

3. H₃C-C=C-CH₂-CH-CH₃

A) α -метил- α -изопропил- β -метил- β -

изобутилэтилен

Б) диметилизопропилизобутилэтилен

В) α,β-диметил-α-изопропил-β-изобутилэтилен Γ) α -изопропил- α , β -диметил- β -втор-бутилэтилен

Д) диметилизопропилвтор-бутилэтилен

А) 2-метил-5-этил-3-гептин

Б) 3-этил-6-метил-4-гептин

В) 2-метил-5-этил-3-октин

Г) 1-изопропил-3-этил-1-пентин

Д) 6-метил-3-этил-4-гептин

А) 4,5-диметил-6-октин-2-ен

Б) 4,5-диметил-6-октен-2-ин

В) 4,5-диметил-2-октенин

Г) 4-метил-5-метил-2-октен-6-ин

Д) 4,5-диметил-2-октен-6-ин

Шкала оценивания **теста** «Предмет органической химии. Теория строения А.М. Бутлерова».

Оценка отлично 90 - 100% правильных ответов

Оценка хорошо 75 - 89% правильных ответов

Оценка удовлетворительно 60 - 74% правильных ответов

Оценка неудовлетворительно 59% и менее правильных ответов.

Пример заданий контрольная работа «Теоретические основы органической химии».

I. Для соединений:

1. Укажите тип гибридизации каждого атома углерода.

2. Графически изобразите индуктивный (+I, -I) и мезомерный (+M, -M) электронные эффекты, проявляемые заместителями. Укажите природу заместителей (электронодонорные, электроноакцепторные).

II. Сравните кислотность соединений:

a) CH₃-COOH, ClCH₂-COOH, Cl₃C-COOH;

б) C₂H₅OH и C₂H₅SH.

Объясните с точки зрения влияния электронных эффектов заместителей и природы кислотного центра.

Шкала оценивания контрольной работы «Теоретические основы органической химии».

Оценка «отлично»: обучающийся графически распределяет электронную плотность в молекуле согласно электроотрицательности связанных атомов, указывает заряды на реакционных центрах молекулы. Обучающийся сравнивает заданные соединения по кислотности и основности, выделяет среди них более сильное соединение, аргументирует свой ответ.

Оценка «хорошо»: обучающийся сравнивает соединения по кислотности-основности, распределяет электронную плотность в молекулах, но допускает ошибки.

Оценка «удовлетворительно»: обучающийся справляется со всеми заданиями, но допускает ошибки во всех заданиях.

Оценка «неудовлетворительно»: обучающийся не справляется с поставленной задачей в одном из заданий.

Пример задания **учебно-исследовательской работы** «Определение функциональных групп органических соединений лекарственных средств.».

Техническое задание: идентифицировать неизвестное органическое лекарственное средство.

Обучающемуся выдается пробирка с неизвестным лекарственным средством. За 3 часа исследования с помощью качественных реакций он должен установить наличие в заданном соединении одной или нескольких функциональных групп и сделать соответствующий вывод о предполагаемом лекарственном средстве из списка возможных лекарственных средств. Далее обучающийся оформляет протокол исследования.

Время исследования – 2 часа, время оформления протокола – 1 час. Объем протокола исследования – 1 лист формата А4 или тетрадный разворот.

Протокол должен отражать последовательность этапов исследования и его содержание:

- этап 1: описание предварительных испытаний: пробы на сожжение, определение цвета, запаха, растворимости в заданных растворителях, рН-среды;
- этап 2: проведенные качественные реакции с описанием химизма (уравнений реакций с указанием их механизмов) и аналитических сигналов (выпадение или растворение осадка, выделение газа, изменение окраски раствора или осадка, появление характерного запаха, выделение или поглощение тепла и т.п.);
- этап 3: вывод о принадлежности органического соединения к определенному классу и итог предполагаемое лекарственное средство.

Шкала оценивания УИР:

недифференцированная оценка:

- оценка «зачтено» выставляется обучающемуся, показавшему всесторонние, систематизированные, глубокие знания вопросов контрольной работы и умение уверенно применять их на практике при решении конкретных задач, свободное и правильное обоснование принятых решений; если он твердо знает материал, грамотно и по существу излагает его, умеет применять полученные знания на практике, но допускает в ответе или в решении задач некоторые неточности, которые может устранить с помощью дополнительных вопросов преподавателя; обучающемуся, показавшему фрагментарный, разрозненный характер знаний, недостаточно правильные формулировки базовых понятий, нарушения логической последовательности в изложении программного материала, но при этом он владеет основными понятиями выносимых на контрольную работу тем, необходимыми для дальнейшего обучения и может применять полученные знания по образцу в стандартной ситуации.
- оценка «не зачтено» выставляется обучающемуся, который не знает большей части основного содержания выносимых на контрольную работу вопросов тем дисциплины, допускает грубые ошибки в формулировках основных понятий и не умеет использовать полученные знания при решении типовых практических задач.

Пример набора вопросов **собеседования** по теме «Спирты».

- 1. Какие эффекты можно наблюдать при нагревании смеси этилового спирта с бихроматом натрия в присутствии серной кислоты? Каков химизм протекающей реакции? Что происходит при добавлении в пробирку с реакционной смесью фуксинсернистой кислоты? Поясните. Приведите уравнения реакций.
- 2. Что происходит в пробирке при нагревании глицерина со свежеосажденным гидроксидом меди (II)? Нагрейте полученный раствор до кипения. Опишите наблюдения, поясните. Приведите уравнения реакций.
- 3. Какой химический процесс протекает при нагревании этилового спирта с недостатком серной кислоты? Приведите уравнения реакций.

Шкала оценивания набора вопросов **собеседования** по теме «Спирты».

Оценка «зачтено»: 1) обучающийся проводит лабораторный практикум, 2) оформляет протокол практикума, 3) отвечает на вопросы собеседования.

Оценка «не зачтено»: обучающийся не выполняет один и более из вышеперечисленных пунктов.

- 4.2. Формы и материалы промежуточной аттестации.
- 4.2.1. Промежуточная аттестация проводится в форме письменного экзамена.
- 4.2.2. Оценочные средства для промежуточной аттестации.

Пример экзаменационного билета

Залание І.

Парацетамол (paracetamol) - анальгетическое ненаркотическое средство. Обладает болеутоляющим, жаропонижающим и незначительным противовоспалительным действием. Механизм действия связан с ингибированием синтеза простагландинов, преимущественным влиянием на центр терморегуляции в гипоталамусе.

Для данного соединения:

- 1. Обозначьте все функциональные группы, назовите соответствующие им классы органических соединений. (4 б.)
- 2. На каждую функциональную группу приведите по две качественных реакции. (10 б.)

Задание II.

В лабораторию на анализ поступила бесцветная жидкость с характерным аммиачным запахом. По поврежденной этикетке на флаконе удалось прочесть только брутто формулу соединения $C_4H_{11}N$.

Приведите структурные формулы данных соединений.

Предложите: а) физический и б) химический способы, позволяющие идентифицировать вещества. Опишите последовательность проведения анализа. (12 б.)

Задание III.

Приведите структурные формулы промежуточных веществ и конечного продукта в следующей схеме (14 б.):

4 H₃C -CH -COONа
$$\xrightarrow{\mathfrak{I}}$$
 2 A $\xrightarrow{\mathfrak{I}}$ 2 Б $\xrightarrow{\mathfrak{I}}$ В $\xrightarrow{\mathfrak{I}}$ В $\xrightarrow{\mathfrak{I}}$ Г $\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}}\overset{\mathfrak{I}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}\overset{\mathfrak{I}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}}}{\overset{\mathfrak{I}}$

Шкала оценивания.

- 36-40 б. оценка «отлично»: обучающийся применяет данные анализа органических соединений для установления их структуры, классифицирует органические вещества по кислотно-основным свойствам, использует теоретические основы органической химии для прогнозирования свойств соединений, осуществляет анализ органического соединения физико-химическими методами (качественные реакции на функциональные группы) и составляет отчет о проделанной работе.
- 30-35 б. оценка «хорошо»: обучающийся владеет вышеперечисленными навыками, но допускает незначительные ошибки.
- 21-29 б. «удовлетворительно»: обучающийся владеет вышеперечисленными навыками, но допускает ошибки.
 - 0-20 б. «неудовлетворительно»: заявленные выше навыки не сформированы.

5. Методические указания по освоению дисциплины

- 1. Методические указания для обучающихся по дисциплине ОП.077. органическая химия (полный комплект находится на кафедре общей и органической химии).
- 2. Вопросы и задачи по органической химии для подготовки к лабораторным занятиям: <u>практикум</u> / Н.М. Игидов, Н.В. Носова, Н.Н. Першина, О.В. Гашкова, Е.С. Лиманский, В.Л. Гейн Пермь, 2016. 88 с.
- 3. Механизмы реакций в органической химии: учебное пособие / Н.М. Игидов, Н.В. Носова, Н.Н. Першина, Е.С. Лиманский Пермь, 2016. 66 с.
- 4. Номенклатура органических соединений. Теоретические основы органической химии: учебнометодическое пособие / А.Г. Михайловский, Н.М. Игидов, Н.В. Носова, Н.Н. Першина, О.В. Гашкова Пермь, 2011.-82 с.

6. Учебная литература для обучающихся по дисциплине

- 6.1. Основная литература.
 - 1. Органическая химия : учебник / С. Э. Зурабян, А. П. Лузин ; под ред. Н. А. Тюкавкиной. Москва : ГЭОТАР-Медиа, 2022. 384 с. ISBN 978-5-9704-6787-9. Текст : электронный // ЭБС "Консультант студента" : [сайт]. URL : https://www.studentlibrary.ru/book/ISBN9785970467879.html. Режим доступа : по подписке.
 - 2. Тюкавкина, Н. А. Биоорганическая химия: руководство к практическим занятиям: учебное пособие / под ред. Н. А. Тюкавкиной. Москва: ГЭОТАР-Медиа, 2020. 176 с. ISBN 978-5-9704-5600-2. Текст: электронный // ЭБС "Консультант студента": [сайт]. URL: https://www.studentlibrary.ru/book/ISBN9785970456002.html. Режим доступа: по подписке.
- 6.2. Дополнительная литература.
 - 1. Семенов, И. Н. Химия: учебник для вузов / И. Н. Семенов, И. Л. Перфилова. Санкт-Петербург: ХИМИЗДАТ, 2022. 656 с. ISBN 978-5-93808-389-9. Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. URL: https://www.iprbookshop.ru/122441. Режим доступа: для авторизир. пользователей
 - 2. Видео-химия, http://himiya-video.com/
 - 3. Химик, сайт о химии, http://www.xumuk.ru/organika/
 - 4. Химический факультет МГУ. Учебные материалы по курсу органической химии, http://www.chem.msu.su/rus/teaching/org.html

7. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

В процессе изучения дисциплины используется: лаборатория органической химии, оборудованная вытяжными шкафами, лабораторное и инструментальное оборудование для работы обучающихся.

Оборудование: мультимедийный комплекс (ноутбук, проектор, экран), наборы таблиц / мультимедийных наглядных материалов по разделу «теоретические основы органической химии», доска; наборы реактивов и оборудования для проведения лабораторного практикума по разделам курса.