Документ подписан простой электронной подписью Информация о владельце:

ФИО: Лужанин Владим **МИТЕГИСТЕРСТВО 3 ДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ** Должность: исполняющий обязанности ректора ОБЛЕНЕ 10:01-2012 Г. ОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

Уникальный спотратичный бире А ЗОВАНИЯ «ПЕРМСКАЯ ГОСУДАРСТВЕННАЯ ФАРМАЦЕВТИЧЕСКАЯ 4f6042f92f26818253a667205646475b93807ac6 АКАДЕМИЯ»

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАФЕДРА АНАЛИТИЧЕСКОЙ ХИМИИ

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ ДЛЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ ОП.10. «АНАЛИТИЧЕСКАЯ ХИМИЯ»

Составитель: доцент Непогодина Е.А. доцент Колотова Н.В.

Занятие № 1

ТЕМА: КАЧЕСТВЕННЫЙ АНАЛИЗ КАТИОНОВ

ЦЕЛЬ ЗАНЯТИЯ: освоить выполнение качественных химических реакций на катионы, используя приёмы полумикроанализа.

ЗАДАЧИ:

- 1. Изучить особенности проведения аналитических реакций на катионы.
- 2. Выполнить характерные реакции обнаружения катионов.
- 3. Обнаружить катионы в растворе неизвестного состава (УИРС).

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ:

- 1. Понятие аналитической реакции, аналитического сигнала.
- 2. Требования к аналитическим реакциям.
- 3. Характерные (специфические и селективные) реакции и реагенты.
- 4. Способы выполнения аналитических реакций.
- 5. Применение солей калия, натрия, кальция в медицине.
- 6. Назовите реакции обнаружения ионов серебра.
- 7. Назовите специфические реакции для обнаружения катионов кальция.
- 8. Назовите реакции обнаружения катионов меди (II).
- 9. Назовите катионы, имеющие собственную окраску.
- 10. Назовите и обоснуйте необходимые условия для обнаружения катионов калия виннокаменной кислотой.

ЛИТЕРАТУРА

- 1. Аналитическая химия: учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. Новосибирск: Новосибирский государственный технический университет, 2016. 76 с. ISBN 978-5-7782-2951-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г.К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия : учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов : Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия : учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва : Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст : электронный // Электронно-библиотечная система IPR

- BOOKS : [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М.А. Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

Анализ – это процедура получения опытным путём данных о составе вещества.

В зависимости от поставленных задач различают качественный, количественный, структурный и системный анализ.

Качественный химический анализ предназначен для обнаружения (открытия) компонентов анализируемого объекта и его идентификации (установления подлинности, аналогии с определённым эталоном - стандартом).

Задачей качественного химического анализа неорганических соединений является обнаружение ионного состава анализируемого образца путем проведения аналитических реакций.

Аналитические реакции — это реакции, применяемые для обнаружения, количественного определения и разделения компонентов анализируемого образца.

Одним из требований к аналитическим реакциям является наличие аналитического сигнала (эффекта).

Аналитический сигнал в качественном химическом анализе — это визуально наблюдаемое свойство вещества, вступившего в аналитическую реакцию.

К аналитическим сигналам в химическом анализе относятся:

- образование (или растворение) осадка с определёнными аналитическими свойствами (цвет, форма кристаллов, растворимость в определённых растворителях)
- изменение окраски анализируемого раствора;
- образование газообразного продукта с характерными свойствами

Обнаружение ионов в качественном анализе проводится с помощью характерных реагентов (специфических и селективных).

Реагенты – это вещества, вступающие в реакцию с анализируемым образцом.

Селективные реагенты реагируют с ограниченным числом ионов. Специфические реагенты вступают в аналитические реакции с одним ионом.

Катионы – это положительно заряженные ионы. Простые катионы образуют s-, p- и d-элементы за счёт отдачи валентных электронов.

Химико-аналитические свойства катионов зависят от положения образующих их элементов в периодической системе Д. И. Менделеева, в частности, от величины заряда ядра атома, строения его внешней и внутренних электронных оболочек, заряда иона, величины его радиуса и других факторов.

Для обнаружения катионов используют четыре типа химических реакций:

- протолитические, обусловленные переносом протонов между реагирующими частицами $B_1H + B_2 \leftrightarrow B_1^- + H B_2^+$
- окислительно-восстановительные, протекающие с изменением степени окисления реагирующих частиц

$$O\kappa_1 + Boc_2 \leftrightarrow O\kappa_2 + Boc_1$$

• реакции комплексообразования, в которых происходит передача электронных пар от донора к акцептору

$$Me^{n+} + nL^{-} \leftrightarrow [MeL_n]^0$$

• осадительные реакции, протекающие с образованием малорастворимых соединений $Me^{n+} + An^{m-} \longleftrightarrow Me_m An_n \downarrow$

Обнаружение катионов при совместном присутствии в случае небольшого числа ионов (1-5) может быть проведено дробным анализом.

Дробный анализ основан на обнаружении искомых ионов в отдельных порциях исследуемого раствора с применением специфических или селективных реакций в любой последовательности. Метод требует удаления или маскировки мешающих ионов.

Для обнаружения катионов используют следующие способы выполнения аналитических реакций:

• Пробирочный способ

 $Общая \ методика:$ в пробирку вносят 2-3 капли исследуемого раствора, создают необходимые условия для протекания реакции (значение pH среды, температуру и т.д.), прибавляют полуторный избыток реагента и наблюдают за внешним эффектом.

• Экстракционный способ

Аналитическая реакция проводится в пробирке, продукт реакции извлекают в слой органического растворителя, в котором наблюдают окрашивание.

• Реакция в «газовой камере»

 $Общая\ методика:$ на предметное стекло помещают кусочек индикаторной бумаги или каплю реагента. В тигель помещают 3-5 капель анализируемого раствора. Закрывают тигель стеклом с висящей капелей реагента или индикаторной бумагой, при необходимости нагревают и на предметном стекле наблюдают эффект реакции.

• Микрокристаллоскопический способ (МКС)

Общая методика: на предметное стекло микрокапилляром помещают каплю анализируемого раствора и рядом каплю раствора реагента. Осторожно стеклянной палочкой приводят растворы в соприкосновение. Иногда требуется лёгкое нагревание. Через 2-3 минуты под микроскопом наблюдают эффект реакции (кристаллы характерной формы, цвета).

• Хроматографический способ (на фильтровальной бумаге)

Общая методика: на фильтровальную бумагу помещают каплю анализируемого раствора, каплю раствора вспомогательного вещества и реагента. Наблюдают появление окраски. Мешающие компоненты устраняют предварительным нанесением на бумагу маскирующего реагента.

• Пирохимический способ (окрашивание бесцветного пламени горелки или спиртовки, получение окрашенных перлов и др.).

Общая методика пробы окрашивания бесцветного пламени: на кончике платиновой проволоки или графита вносят в пламя несколько кристаллов летучих солей. Наблюдают характерное окрашивание пламени.

• Порошковый способ

Общая методика: растирают в ступке небольшое количество твёрдого исследуемого вещества с реагентом. Открываемый ион обнаруживают по образованию окрашенного соединения или по запаху.

Основные аналитические операции в качественном анализе

- **1.** Нагревание. Нагревание раствора проводят в пробирке на водяной бане (в сосуде с кипящей водой).
- 2. Выпаривание. Выпаривание растворов проводят для их концентрирования или полного удаления воды в фарфоровых чашках или тиглях на водяной или песчаной бане.
- **3.** Осаждение. В пробирку помещают определенное количество анализируемого раствора (в соответствии с методикой) и прибавляют пипеткой указанное количество капель реагента.
- **4.** Центрифугирование основано на ускорении оседания частиц твердой фазы под влиянием центробежной силы, развивающейся при быстром вращении центрифуги. Центрифугирование используется для отделения осадка от раствора. При этом осадок собирается на дне пробирки, а над пробиркой центрифугат (прозрачный раствор). Для центрифугирования используют только центрифужные пробирки.
- **5.** Перенесение центрифугата в чистую пробирку производят пипеткой, не касаясь осадка на дне пробирки.
- **6.** Проба на полноту осаждения обязательна после центрифугирования. К центрифугату прибавляют каплю осаждающего реагента. Если раствор останется прозрачным, то отделяемый ион полностью осажден. Если раствор мутнеет, то прибавляют несколько капель осаждающего реагента, снова центрифугируют и снова проверяют на полноту осаждения.
- **7.** Промывание осадка. Осадок после центрифугирования содержит ионы, которые были в растворе. Чтобы достичь полноты разделения, осадок промывают водой $(1-2\ {\rm cm}^3)$ или другой жидкостью, перемешивают стеклянной палочкой и вновь центрифугируют. Центрифугат отбрасывают.
- **8.** Растворение осадка проводят, добавляя к промытому осадку необходимое количество растворителя.

Химическая лаборатория должна быть оборудована лабораторными столами, вытяжным шкафом, подводкой электричества, воды, набором химических реактивов, полками и ящиками для их хранения, и другим специальным оборудованием. Лабораторная химическая посуда, как правило, изготавливается из особых сортов стекла, пластика и керамики, отличается химической стойкостью и термостойкостью.

ПРОБИРОЧНЫЙ СПОСОБ ВЫПОЛНЕНИЯ РЕАКЦИЙ ОБНАРУЖЕНИЯ КАТИОНОВ Ион натрия (Na^+)

1. Реакция с гексагидроксостибатом (V) калия $K[Sb(OH)_6]$ с образованием белого кристаллического осадка, растворимого в щелочах

$$NaCl + K[Sb(OH)_6] \rightarrow Na[Sb(OH)_6] \downarrow + KCl$$

 $Na[Sb(OH)_6] \downarrow + 2 NaOH \rightarrow Na_3SbO_4 + 4 H_2O$

Условия проведения реакции: а) достаточная концентрация Na^+ ; б) нейтральная реакция раствора; в) проведение реакции на холоду; г) механическое воздействие для образования центров кристаллизации. Мешающие ионы: NH_4^+ , Mg^{2+} и др.

Memoduka: в растворе соли натрия (5 – 6 капель) при помощи универсального индикатора определяют рН среды. Если среда кислая (pH < 7), нейтрализуют ее, прибавляя по каплям гидроксид калия. Если среда щелочная (pH > 7), прибавляют по каплям раствор уксусной кислоты до нейтральной реакции (pH = 7). К этому раствору прибавляют 2 – 3 капли раствора

гексагидроксостибата (V) калия. Пробирку охлаждают под струей холодной водопроводной воды. Потирание стенок пробирки стеклянной палочкой внутри раствора ускоряет процесс выпадения белого кристаллического осадка соли гексагидроксостибата (V) натрия.

Ион калия (
$$K^+$$
)

1. Реакция с виннокаменной кислотой $H_2C_4H_4O_6$ с образованием белого кристаллического осадка гидротартрата калия, растворимого в горячей воде, сильных кислотах и щелочах и нерастворимого в уксусной кислоте

$$KCl + H_2C_4H_4O_6 \rightarrow KHC_4H_4O_6 \downarrow + HCl$$

Реакцию проводят в присутствии ацетата натрия.

$$HCl + CH_3COONa \rightarrow CH_3COOH + NaCl$$

Условия проведения реакции: а) высокая концентрация K^+ в растворе; б) проведение реакции на холоду; в) слабокислая или нейтральная реакция раствора (pH 4 - 7); г) механическое воздействие для образования центров кристаллизации.

Мешающие ионы: NH_4^+ , катионы s^2 - и d-элементов.

Memoduka: к 4 — 5 каплям раствора соли калия прибавляют такой же объем раствора ацетата натрия и 4 — 5 капель раствора реагента. Если осадок не выпадает, то потирают стеклянной палочкой внутренние стенки пробирки внутри раствора для образования центров кристаллизации, охлаждая пробирку под струёй холодной водопроводной воды. Трение ускоряет выпадение осадка вследствие образования кристаллизационных центров.

Образующийся осадок растворим в разбавленных минеральных кислотах и щелочах. Испытывают отношение осадка к действию кислот и щелочей:

Методика: перемешав содержимое пробирки стеклянной палочкой (см. методику выше), помещают в три пробирки по капле мутной жидкости. В одну пробирку прибавляют каплю кислоты (хлористоводородной или серной кислотами), на другую – каплю щелочи (гидроксидом натрия или гидроксидом калия), на третью – каплю уксусной кислоты. Во всех случаях кроме последнего, наблюдают растворение осадка.

2. Реакция с гексанитритокобальтатом (III) натрия $Na_3[Co(NO_2)_6]$ с образованием кристаллического осадка жёлтого цвета, растворимого в сильных кислотах, разлагающегося щелочами

$$2 \text{ KCl} + \text{Na}_3[\text{Co}(\text{NO}_2)_6] \rightarrow \text{K}_2\text{Na}[\text{Co}(\text{NO}_2)_6] \downarrow + 2 \text{ NaCl}$$

Условия проведения реакции:

а) использование свежеприготовленного реагента; б) избыток реагента; в) слабокислая среда (pH 4-6); г) проведение реакции на холоду; д) потирание стеклянной палочкой о стенку пробирки.

Мешающие ионы: NH_4^+ , катионы р - и d-элементов.

Memoduka: к 3-4 каплям соли калия прибавляют 2-3 капли раствора гексанитрокобальтата (III) натрия, раствор перемешивают. Наблюдают образование желтого кристаллического осадка. Если осадок не выпадает, дают смеси дают постоять.

Реакцию проводят в слабокислой (уксусной) или нейтральной среде. Сильные кислоты разрушают реактив с выделением азотистой кислоты. Щелочная среда также недопустима, так как под действием щелочей реактив разрушается с образованием бурого осадка гидроксида кобальта (III).

Ион аммония с гексанитрокобальтатом (III) натрия также образует желтый осадок и, следовательно, в присутствии катиона аммония эту реакцию использовать для открытия катиона калия нельзя.

Ион серебра
$$(Ag^+)$$

1. С раствором хлороводородной кислоты HCl с образованием белого творожистого осадка хлорида серебра, растворимого в концентрированном растворе аммиака

$$AgNO_3 + HCl \rightarrow AgCl \downarrow + HNO_3$$

$$AgCI \downarrow + 2 NH_4OH \rightarrow [Ag(NH_3)_2]CI + 2 H_2O$$

В аммиачном растворе ион Ag^+ обнаруживают в виде осадков йодида серебра (желтый) и хлорида серебра (белый):

$$[Ag(NH_3)_2]CI + 2 HNO_{3KOHII} \rightarrow AgCI \downarrow + 2 NH_4NO_3$$

Mетодика: к 1-2 каплям раствора соли серебра прибавляют 2-3 капли раствора хлороводородной кислоты. Наблюдают образование белого творожистого осадка, который растворяется в концентрированном растворе аммиака. К растворенному осадку в одной порции раствора хлорида диамминсеребра (I) прибавляют 2-3 капли концентрированной азотной кислоты, при этом образуется белый творожистый осадок; к другой порции раствора прибавляют 2-3 капли раствора йодида калия, при этом образуется желтый осадок.

Ион кальция (
$$Ca^{2+}$$
)

1. С оксалатом аммония $(NH_4)_2C_2O_4$ с образованием белого мелкокристаллического осадка оксалата кальция, растворимого в минеральных кислотах и нерастворимого в уксусной кислоте. Условия проведения реакции: pH среды 6-7

$$CaCl_2 + (NH_4)_2C_2O_4 \rightarrow CaC_2O_4 \downarrow + 2 NH_4Cl$$

Мешающие ионы: Sr^{2+} , Ba^{2+} , катионы p- и d-элементов, сильные окислители.

Оксалат кальция в кислой среде при нагревании обесцвечивает раствор перманганата калия.

Mетодика: к 2 — 3 каплям раствора соли кальция прибавляют 2 — 3 капли раствора оксалата аммония. Наблюдают образование осадка. К осадку по каплям прибавляют раствор хлороводородной кислоты и наблюдают растворение осадка.

Ион бария (
$$Ba^{2+}$$
)

1. С разбавленной серной кислотой H_2SO_4 с образованием белого осадка

$$BaCl_2 + H_2SO_4 \rightarrow BaSO_4 \downarrow + 2 HCl$$

Mетодика: к 2 — 3 каплям раствора соли бария прибавляют 2 — 3 капли разведённой серной кислоты. Наблюдают образование осадка. Делят образовавшийся осадок на две части и помещают в пробирки. В одну пробирку по каплям прибавляют раствор хлороводородной кислоты — осадок не растворяется, во вторую пробирку прибавляют раствор гидроксида натрия - осадок не растворяется.

Ион цинка
$$(Zn^{2+})$$

1. С сульфидом натрия Na_2S или сероводородом H_2S с образованием осадка белого цвета, нерастворимого в избытке осадителя, в щелочи и уксусной кислоте и растворимого в сильных кислотах

$$ZnCl_2 + Na_2S \rightarrow ZnS \downarrow + 2 NaCl$$

Мешающие ионы: катионы p- и d-элементов. Реакция используется после удаления мешающих ионов.

Методика: к 2 каплям раствора соли цинка прибавляют 4 капли сульфида натрия и наблюдают появление белого осадка.

2. С гексацианоферратом (II) калия $K_4[Fe(CN)_6]$ с образованием белого осадка гексацианоферрата (II) калия-цинка, растворимого в щелочах и нерастворимого в разбавленной хлороводородной кислоте

$$3 \operatorname{ZnCl}_2 + 2 \operatorname{K}_4[\operatorname{Fe}(\operatorname{CN})_6] \rightarrow \operatorname{K}_2\operatorname{Zn}_3[\operatorname{Fe}(\operatorname{CN})_6]_2 \downarrow + 6 \operatorname{KCl}$$

Мешающие ионы: катионы s^2 -, p - и d-элементов (кроме Al^{3+} и Cr^{3+}), ионы-окислители.

Mетодика: к 4 - 5 каплям раствора соли цинка прибавляют 5 - 6 капель реагента и наблюдают образование белого осадка.

Ион магния
$$(Mg^{2+})$$

1. С гидрофосфатом натрия Na₂HPO₄ в присутствии аммонийного буферного раствора с образованием белого кристаллического осадка, растворимого в уксусной и минеральных кислотах

 $MgCl_2 + NaHPO_4 + NH_4OH \rightarrow MgNH_4PO_4 \downarrow + H_2O + 2NaCl$

$$2 \text{ MgNH}_4\text{PO}_4\downarrow + 4\text{CH}_3\text{COOH} \rightarrow 2\text{Mg}(\text{CH}_3\text{COO})_2 + (\text{NH}_4)_2\text{HPO}_4 + \text{H}_3\text{PO}_4$$

Реакцию обнаружения проводят при рН = 9 в присутствии аммиачного буферного раствора.

Мешающие ионы: катионы s-, p- и d-элементов. Для использования ее в качестве дробной, мешающие ионы удаляют: катионы p-элементов – восстановлением цинком в среде аммиака; Ba^{2+} , Sr^{2+} – осаждением сульфатом аммония; Fe^{3+} , AI^{3+} , Cr^{3+} – раствором аммиака; Mn^{2+} , Fe^{2+} , Co^{2+} – окислением пероксиксидом водорода.

Методика № 1: к 2 – 3 каплям раствора соли магния прибавляют раствор гидроксида аммония до прекращения образования осадка магния гидроксида. Сюда же прибавляют раствор хлорид аммония до полного растворения полученного магния гидроксида. К полученному аммонийному раствору магниевой соли по каплям прибавляют разбавленный раствор гидрофосфата натрия. Из раствора выделяются мелкие белые кристаллы ортофосфата аммония-магния.

Методика № 2: в пробирке смешивают 4 капли раствора соли магния, 1 каплю раствора хлорида аммония и 3 капли раствора гидроксида аммония. Далее каплю полученного раствора наносят на предметное стекло, прибавляют каплю раствора гидрофосфата натрия и наблюдают под микроскопом бесцветные кристаллы в виде дендритов или звездочек.

Ион железа (II)
$$(Fe^{2+})$$

1. С гексацианоферратом (III) калия $K_3[Fe(CN)_6]$ с образованием тёмно-синего осадка гексацианоферрата (III) железа (II) калия («турнбулевой сини»), нерастворимого в кислотах, разлагающегося щелочами с образованием гидроксида железа (III)

$$FeSO_4 + K_3[Fe(CN)_6] \rightarrow KFe[Fe(CN)_6] \downarrow + K_2SO_4$$

Оптимальная величина pH проведения реакции составляет 2-3. Реакция дробная, высокочувствительная. Мешают высокие концентрации Fe^{3+} .

Mетодика: к 3 — 5 каплям раствора соли железа (II) прибавляют 1 — 2 капли раствора гексацианоферрата (III) калия, наблюдают выпадение осадка гексацианоферрата (III) железа (II) калия.

 $2.~{\rm C}$ сульфидом аммония $({\rm NH_4})_2{\rm S}$ с образованием чёрного осадка, растворимого в сильных кислотах

$$FeSO_4 + (NH_4)_2S \rightarrow FeS \downarrow + (NH_4)_2SO_4$$

Mетодика: к 2 — 3 каплям раствора соли железа (II) прибавляют 3 капли раствора сульфида аммония; образуется черный осадок, растворимый в минеральных кислотах.

Ион железа (III) (
$$Fe^{3+}$$
)

1. С гексацианоферратом (II) калия $K_4[Fe(CN)_6]$ с образованием синего осадка гексацианоферрата (III) железа (II) калия («берлинской лазури»), нерастворимого в сильных кислотах, разлагающегося щелочами с образованием гидроксида железа (III)

$$FeCl_3 + K_4[Fe(CN)_6] \rightarrow KFe[Fe(CN)_6] \downarrow + 3KCl$$

Оптимальное значение рН проведения реакции составляет 2 – 3. Реакция дробная.

Мешающие ионы: катионы окислители и восстановители (Hg^{2+} , Cu^{2+} , Bi^{3+} , Sn^{2+}) и анионы F^{-} , $C_2O_4^{2-}$, PO_4^{3-} , $C_4H_4O_6^{2-}$, образующие с Fe^{3+} прочные комплексные ионы.

Mетодика: к 3 — 5 каплям раствора соли железа (III) прибавляют 4 — 6 капель раствора гексацианоферратом (II) калия. Наблюдают выделение осадка гексацианоферрата (III) железа (II) калия.

2. С тиоцианатом аммония NH_4SCN или калия KSCN с образованием комплексных соединений различного состава в зависимости от концентрации SCN^- -иона: $[Fe(SCN)_2]^+$, $[Fe(SCN)_3]^o$, и т.д. до $[Fe(SCN)_6]^{3-}$, растворы которых имеют кроваво-красную окраску

$$FeCl_3 + 3NH_4SCN \rightarrow Fe(SCN)_3 + 3NH_4Cl$$
 или

$$FeCl_3+6NH_4SCN \rightarrow (NH_4)_3[Fe(SCN)_6] + 3NH_4Cl$$

Реакция дробная, чувствительная. Мешающие ионы: Cu^{2+} , Bi^{3+} и анионы F^- , $C_2O_4^{2-}$, PO_4^{3-} , $C_4H_4O_6^{2-}$.

Mетодика: к 3 - 5 каплям раствора соли железа (III) прибавляют 1 - 2 капли тицианата аммония. Наблюдают появление интенсивной кроваво-красной окраски раствора.

 $3.\ C$ сульфидом аммония $(NH_4)_2S$ с образованием осадка чёрного цвета, растворимого в сильных кислотах

$$2\text{FeCl}_3 + 3(\text{NH}_4)_2\text{S} \rightarrow \text{Fe}_2\text{S}_3\downarrow + 6 \text{NH}_4\text{Cl}$$

Mетодика: к 2 – 3 каплям раствора соли железа (III) прибавляют 3 – 4 капли раствора сульфида аммония; образуется черный осадок, растворимый в сильных кислотах.

Ион висмута
$$(Bi^{3+})$$

 $1.~{\rm C}$ сульфидом натрия ${\rm Na_2S}$ в солянокислой среде с образованием коричнево-чёрного осадка, нерастворимого в разбавленных хлороводородной и серной кислотах, растворимого в азотной кислоте

$$2BiCl_3 + 3Na_2S \rightarrow Bi_2S_3 \downarrow + 6NaCl$$

 $Bi_2S_3 \downarrow + 8HNO_3 \rightarrow 2Bi(NO_3)_3 + 2NO^{\uparrow} + 3S \downarrow + 4H_2O$

Методика: 0,1 г соли висмута взбалтывают с 20 каплями хлороводородной кислоты с концентрацией 8,3 % и фильтруют. К фильтрату прибавляют 6 – 7 капель 2 % раствора сульфида натрия, образуется коричневато-чёрный осадок, растворимый при добавлении равного объёма концентрированной азотной кислоты.

2. С иодидом калия KI с образованием чёрного осадка, растворимого в избытке реагента с образованием комплексного соединения оранжевого цвета

$$BiCl_3 + 3KI \rightarrow BiI_3 \downarrow + 3 KCl$$

$$BiI_3 \downarrow + KI \rightarrow K[BiI_4]$$

Реакция дробная. Мешающие ионы: Fe^{3+} , Cu^{2+} , $[SbCI_6]^-$ (окисляют йодидом калия).

Memoduka: к 2 — 3 каплям раствора соли висмута прибавляют 1 каплю раствора иодида калия. Наблюдают образование осадка черного цвета, который растворяют в избытке йодида калия с образованием комплексного соединения (тетрайодовисмутата (III) калия) оранжевого цвета.

Ион меди (
$$Cu^{2+}$$
)

1. С концентрированным раствором гидроксида аммония NH₄OH с выпадением осадка основной соли зеленоватого цвета, легко растворимой в избытке реагента с образованием аммиачного комплекса меди (II) интенсивно синего цвета

$$2CuSO_4 + 2NH_4OH \rightarrow (CuOH)_2SO_4 \downarrow + (NH_4)_2SO_4$$

 $(CuOH)_2SO_4 \downarrow + 8NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + [Cu(NH_3)_4](OH)_2 + 8H_2O$

Методика: к 5 каплям раствора соли меди прибавляют 2 капли концентрированного раствора гидроксида аммония; образуется осадок зелёного цвета, растворимый в избытке реактива с образованием раствора комплексного соединения интенсивно синего цвета.

2. С глицерином в основной среде с образованием раствора глицерата меди (II) синего цвета

Mетодика: к 2 каплям раствора соли меди (II) прибавляют 4 - 5 капель раствора гидроксида натрия и 2 капли глицерина; появляется синяя окраска раствора комплексного соединения.

МИКРОКРИСТАЛЛОСКОПИЧЕСКИЙ СПОСОБ ОБНАРУЖЕНИЯ КАТИОНОВ (МКС)

Ион натрия (Na^+)

1. Реакция с пикриновой кислотой с образованием кристаллов пикрата натрия жёлтого цвета игольчатой формы, исходящих из одной точки

$$NaC1 + O2N \longrightarrow O2N \longrightarrow O2N \longrightarrow NO2 + HC1$$

Реакция используется только в отсутствие мешающих ионов (K^+, NH_4^+, Ag^+) .

Memoduka: на предметное стекло наносят каплю раствора соли натрия и каплю пикриновой кислоты. Через 2-3 мин. рассматривают объект под микроскопом: по краю капли наблюдают образовавшиеся жёлтые игольчатые кристаллы, собранные в пучки или исходящие из одной точки.

Ион кальция
$$(Ca^{2+})$$

1. С йодноватой кислотой НІО₃ с образованием кристаллов йодата кальция в виде бипирамид

$$CaCl_2 + 2 HIO_3 \rightarrow Ca(IO_3)_2 \downarrow + 2 HCl$$

Мешающие ионы: ${\rm Sr}^{2+}, {\rm Ba}^{2+}, {\rm Ag}^+,$ ионы - восстановители.

Методика: на предметное стекло наносят каплю раствора соли кальция и каплю раствора йодноватой кислоты, под микроскопом наблюдают кристаллы в виде бипирамид.

ХРОМАТОГРАФИЧЕСКИЙ СПОСОБ ОБНАРУЖЕНИЯ КАТИОНОВ

Ион висмута (Bi^{3+})

1. С тиомочевинной $(NH_2)_2CS$ с образованием комплексного иона жёлтого цвета (хроматографический способ выполнения)

$$BiCl_3 + 3NH_2 - CS - NH_2 \rightarrow [Bi\{SC(NH_2)_2\}_3]Cl_3$$

Реакция дробная. Мешающие ионы: Fe^{3+} , Hg^{2+} .

Методика: на фильтровальную бумагу наносят каплю раствора соли висмута (III) и каплю раствора тиомочевины и наблюдают появление желтого пятна.

РЕАКЦИИ ОБНАРУЖЕНИЯ КАТИОНОВ В «ГАЗОВОЙ КАМЕРЕ»

Ион аммония (NH_4^+)

1. Реакция с гидроксидом натрия

$$NH_4Cl + NaOH \rightarrow NH_3\uparrow + H_2O + NaCl$$

Методика проведения реакции в «газовой камере»: на предметное стекло прикрепляют кусочек

влажной красной лакмусовой бумаги или фильтровальной бумаги, смоченной фенолфталеином. В тигель помещают 3 — 5 капель анализируемого раствора и такое же количество раствора гидроксида натрия. Закрывают тигель стеклом индикаторной бумагой вниз и осторожно нагревают на водяной бане. Выделяющиеся пары аммиака окрасят лакмусовую бумагу в синий цвет, а фенолфталеиновую — в красный.

2. Реакция с реактивом Несслера $K_2[HgI_4] + KOH$. Образуется аморфный осадок бурого цвета – иодид амминоксодиртути (II) (иодид оксодимеркураммония)

$$NH_4Cl+2 K_2[Hg\underline{I}_4]+4 KOH \longrightarrow O \underbrace{Hg}_{Hg}NH_2 I \downarrow + KC\underline{I}+7 KI+3H_2O$$

Мешающие ионы: катионы тяжёлых металлов. Обнаружение проводят в пробирке или «газовой камере». Проведение реакции в «газовой камере» делает её специфичной и высокочувствительной.

Реакцию проводят в пробирке или «газовой камере» («висячая капля»). Реакция специфична.

Mетодика проведения реакции в «газовой камере»: на предметное стекло наносят каплю тетраиодомеркурата (II) калия, в тигель помещают 3-5 капель исследуемого раствора и такое же количество раствора гидроксида калия. Накрывают тигель стеклом каплей вниз. На стекле появляется бурое пятно.

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Заполнить протоколы по качественному анализу катионов.
- 2. Выполнить практическую работу по анализу раствора неизвестного состава (УИРС)

Протокол № 1

Тема работы: <u>изучение качественных реакций на катионы Na⁺, K⁺, NH₄⁺, Ag⁺, Ca²⁺, Ba²⁺,Zn²⁺, Mg^{2+} , Fe^{2+} , Fe^{3+} , Bi^{3+} , Cu^{2+} </u>

1. Реакция осаждения пикриновой кислотой инов натрия

Уравнение реакции

Аналитический сигнал

Способ выполнения

2. Реакция осаждения винной (виннокаменной) кислотой ионов калия

Уравнение реакции

Растворимость осадка

Аналитический сигнал

Условия проведения

Способ выполнения

3. Реакция осаждения гексанитритокобальтатом (III) натрия (натрия кобальтинитритом 1) ионов калия

натрия кобальтинитрит 1 – название в соответствии с $\Gamma\Phi$ XIV изд.

Уравнение реакции

Аналитический сигнал

Условия проведения

Способ выполнения

4. Реакция вытеснения гидроксидом натрия для обнаружения ионов аммония

Уравнение реакции

Аналитический сигнал

Способ выполнения

- 5. Реакция осаждения хлороводородной кислотой ионов серебра (пункт 1.1) с последующим растворением осадка в концентрированном растворе аммиака (пункт 1.2) и обнаружении иона серебра реакциями осаждения: а) концентрированной азотной кислотой (пункт1.3); б) йодидом калия (пункт 1.4).
- 1.1. Уравнение реакции

Аналитический сигнал

Способ выполнения

1.2. Уравнение реакции

Аналитический сигнал

Способ выполнения

1.3. Уравнение реакции

Аналитический сигнал

Способ выполнения

1.4. Уравнение реакции

Аналитический сигнал

Способ выполнения

6. Реакция осаждения оксалатом аммония ионов кальция

Уравнение реакции

Растворимость осадка

Аналитический сигнал

Способ выполнения

7. Реакция осаждения йодноватой кислотой ионов кальция

Уравнение реакции

Аналитический сигнал

Способ выполнения

8. Реакция осаждения ионов бария серной кислотой разведённой

Уравнение реакции

Аналитический сигнал

Способ выполнения

9. Реакция осаждения сульфидом натрия ионов цинка

Уравнение реакции

Аналитический сигнал

Способ выполнения

10. Реакция осаждения гексацианоферратом (II) калия (калия феррицианидом²) ионов цинка калия феррицианид² - название в соответствии с $\Gamma\Phi$ XIV изд.

Уравнение реакции

Аналитический сигнал

Способ выполнения

11. Реакция осаждения гексацианоферратом (III) калия («красной кровяной солью», калия феррицианидом) ионов железа (II)

Уравнение реакции

Аналитический сигнал

Способ выполнения

12. Реакция осаждения сульфидом аммония ионов железа (II)

Уравнение реакции

Аналитический сигнал

Способ выполнения

13. Реакция осаждения гексацианоферратом (II) калия («желтой кровяной солью», ферроцианидом (II) калия) ионов железа (III)

Уравнение реакции

Аналитический сигнал

Способ выполнения

14. Реакция осаждения тиоцианатом аммония ионов железа (III)

Уравнение реакции

Аналитический сигнал

Способ выполнения

15. Реакция осаждения сульфидом аммония ионов железа (III)

Уравнение реакции

Аналитический сигнал

Способ выполнения

16. Реакция осаждения гидрофосфатом натрия ионов магния

Уравнение реакции

Растворимость осадка

Аналитический сигнал

Способ выполнения

17. Реакция осаждения сульфидом натрия ионов висмута (III)

Уравнение реакции

Растворимость осадка

полуреакции:

Аналитический сигнал

Способ выполнения

18. Реакция осаждения йодидом калия ионов висмута (III) и растворение в избытке реактива с образованием комплексного соединения

Уравнение реакции

Растворимость осадка

Аналитический сигнал

Способ выполнения

19. Реакция комплексообразования с тиомочевиной ионов висмута (III)

Уравнение реакции

Аналитический сигнал

Способ выполнения

20. Реакция осаждения концентрированным раствором аммиака ионов меди (II)

Уравнение реакции

Растворимость осадка

Аналитический сигнал

Способ выполнения

21. Реакция комплексообразования ионов меди (II) с глицерином

Уравнение реакции

Аналитический сигнал

Способ выполнения

ПРОТОКОЛ № 2

АНАЛИЗ РАСТВОРА, СОДЕРЖАЩЕГО НЕИЗВЕСТНЫЙ КАТИОН (УИРС)

Форма отчета:

- уравнение реакций в молекулярно-ионной форме;
- условия проведения реакций;
- аналитические сигналы реакций;
- вывод об обнаружении катиона.

Занятие № 2

ТЕМА: АНАЛИЗ АНИОНОВ

ЦЕЛЬ ЗАНЯТИЯ: освоить выполнение качественных химических реакций на анионы, используя приемы полумикроанализа.

ЗАДАЧИ

- 1. Изучить особенности проведения аналитических реакций на анионы.
- 2. Выполнить характерные реакции обнаружения анионов.
- 3. Обнаружить анионы в растворе неизвестного состава (УИРС).

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

- 1. Назовите способы выполнения аналитических реакций, используемых в анализе анионов.
- 2. Перечислите окислительно-востановительные реакции и реакции комплексообразования, применяемые для обнаружения анионов.
- 3. Назовите анионы восстановители, окислители и индифферентные.
- 4. Назовите анионы, которые взаимодействуют с раствором нитрата серебра.
- 5. Назовите реагент на ацетат-ион в нейтральной среде.
- 6. Реакции можно обнаружения иодид-ионов в присутствии бромид- и хлорид-ионов.
- 7. Назовите реагент на присутствие анионов-восстановителей в анализируемой смеси.
- 8. Перечислите анионы, которые можно обнаружить хлоридом железа.
- 9. Тип реакции, лежащий в основе обнаружения нитрит- и нитрат-ионов с дифениламином.

ЛИТЕРАТУРА

- 1. Аналитическая химия: учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. Новосибирск: Новосибирский государственный технический университет, 2016. 76 с. ISBN 978-5-7782-2951-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г.К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).

- 3. Дроздов, А.А. Химия : учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов : Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия : учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва : Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М.А. Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

Карбонат-ион и гидрокарбонат-ион (CO_3^{2-} и HCO_3^{-})

1. Реакция с разбавленной хлороводородной кислотой HCl

$$Na_2CO_3 + 2HCl \rightarrow CO_2\uparrow + H_2O + 2NaCl$$

 $NaHCO_3 + HCl \rightarrow CO_2\uparrow + H_2O + NaCl$

Mетодика: кс 2 — 3 каплями раствора, содержащего карбонат- или гидрокарбонат ионы, прибавляют 3 — 4 капли 2 моль/дм³ раствора хлороводородной кислоты. Наблюдают выделение пузырьков газа.

2. Реакция осаждения насыщенным раствором сульфата магния MgSO₄

$$3Na_2CO_3 + 2H_2O + 2MgSO_4 \rightarrow [Mg(OH)]_2CO_3 \downarrow + 2NaHCO_3 + 2Na_2SO_4$$

Mетодика: к 2 — 3 каплями раствора, содержащего карбонат- или гидрокарбонат ионы, прибавляют 3 — 4 капли раствора магния сульфата. Наблюдают выделение белого осадка гидроксокарбоната магния (в случае карбонат-ионов). Гидрокарбонат-ионы будут образовывать осадок только при кипячении.

3. Реакция с фенолфталеином

$$Na_2CO_3 + H_2O \rightleftharpoons NaHCO_3 + NaOH$$

Mетодика: к 1-2 каплями раствора, содержащего, карбонат- ионы, прибавляют 1-2 капли 1% раствора фенолфталеина. Наблюдают красное окрашивание раствора. В случае гидрокарбонат-ионов раствор не окрашен.

Нитрит-ион (NO_2^-)

1. Реакция с разбавленной хлороводородной кислотой HCl

$$NaNO_2 + HCl \rightarrow HNO_2 + NaCl$$
 $2HNO_2 \rightarrow NO\uparrow + NO_2\uparrow + H_2O$ $2NO + O_2$ (из воздуха) $\rightarrow 2NO_2\uparrow$

Mетодика: к 2 — 3 каплями раствора, содержащего нитрит-ион, прибавляют 3 — 4 капли 1 моль/дм³ раствора хлороводородной кислоты. Наблюдают выделение жёлто-бурого газа.

2. Реакция с дифениламином в среде концентрированной серной кислоты

Mетодика: в сухую фарфоровую чашку (тигель) помещают кристаллик дифениламина, прибавляют 5 капель концентрированной серной кислоты и 1-2 капли раствора, содержащего нитрит-ионы, наблюдают появление синей окраски.

3. Реакция нитрозирования антипирином

$$H_3C$$
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_3C
 H_4C
 H_4C
 H_5
 H_5
 H_5
 H_6
 H_7
 H

Mетодика: в фарфоровую чашку (пробирку) помещают 5-6 капель 5 % раствора антипирина, прибавляют 2-3 капли раствора, содержащего нитрит-ионы, 2-3 капли 1 моль/дм 3 серной кислоты, перемешивают. Наблюдают появление изумрудно-зеленого окрашивания.

4. Реакция с перманганатом калия КМпО₄ в сернокислой среде

$$5NaNO_2 + 2KMnO_4 + 3H_2SO_4 \rightarrow 5NaNO_3 + 2MnSO_4 + K_2SO_4 + 8H_2O$$

Mетодика: к 2 – 3 капли раствора, содержащего нитрит-ионы, прибавляют 1 – 2 капли 1 моль/дм³ серной кислоты и 3 капли перманганата калия, наблюдают обесцвечивание раствора.

Тиосульфат-ион
$$(S_2O_3^{2-})$$

1. Реакция с разбавленной хлороводородной кислотой HCl

$$Na_2S_2O_3 + 2 HCl \rightarrow H_2S_2O_3 + 2NaCl$$

 $H_2S_2O_3 \rightarrow SO_2\uparrow + S\downarrow + H_2O$

Mетодика: к 2 – 3 каплями раствора, содержащего тиосульфат-ионы, прибавляют 3 – 4 капли 2 моль/дм³ раствора хлороводородной кислоты. Наблюдают помутнение раствора и выделение газа с запахом горящей серы.

2. Реакция осаждения раствором нитрата серебра AgNO₃

$$Na_2S_2O_3 + 2AgNO_3 \rightarrow Ag_2S_2O_3 \downarrow + 2 NaNO_3$$

 $Ag_2S_2O_3 + H_2O \rightarrow Ag_2S \downarrow + H_2SO_4$

Mетодика: к 2 — 3 каплями раствора, содержащего тиосульфат-ионы, прибавляют 3 — 4 капли раствора нитрата серебра, наблюдают образование белого осадка, который быстро желтеет и далее чернеет в результате образования сульфида серебра.

3. Реакция окисления раствором йода I₂

$$2Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + 2NaI$$

Mетодика: к 2 — 3 каплями раствора, содержащего тиосульфат-ионы, прибавляют 3 — 4 капли раствора йода, наблюдают обесцвечивание раствора.

4. Реакция комплексообразования с хлоридом железа (III) FeCl₃

$$2Na_2S_2O_3 + FeCl_3 \rightarrow Na[Fe(S_2O_3)_2] + 3NaCl$$

 $2Na_2S_2O_3 + 2FeCl_3 \rightarrow Na_2S_4O_6 + 2FeCl_2 + 2NaCl$

Mетодика: к 2 — 3 каплями раствора, содержащего тиосульфат-ионы, прибавляют 3 — 4 капли раствора хлорида железа (III), наблюдают появление темно-фиолетового цвета раствора, который быстро исчезает в результате восстановления железа (III) до железа (III).

Фосфат-ион
$$(PO_4^{3-})$$

1. Реакция осаждения раствором нитрата серебра AgNO₃

$$Na_3PO_4 + 3AgNO_3 \rightarrow Ag_3PO_4 \downarrow + 3NaNO_3$$

Mетодика: к 2-3 каплями раствора, содержащего фосфат-ионы, прибавляют 3-4 капли нитрата серебра, выпадает желтый осадок.

2. Реакция осаждения магнезиальной смесью

$$Na_2HPO_4 + MgC1_2 + NH_4OH \rightarrow MgNH_4PO_4 \downarrow + 2NaCl + H_2O$$

Mетодика: к 2-3 каплями раствора, содержащего фосфат-ионы, прибавляют 2-3 капли раствора хлорида аммония, 2-3 капли раствора аммиака и 2 капли раствора хлорида магния, наблюдают выделение белого осадка.

Сульфат-ион
$$(SO_4^{2-})$$

1. Реакция осаждения солями бария BaCl₂

$$Na_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2NaCl$$

Mетодика: к 2 - 3 каплями раствора, содержащего сульфат-ионы, прибавляют 3 - 4 капли раствора хлорида бария, наблюдают образование белого осадка, нерастворимого в минеральных кислотах.

Борат-ионы
$$(BO_3^{3-}, B_4O_7^{2-})$$

1. Реакция этерификации с этанолом

$$Na_2B_4O_7 + H_2SO_4 + 5H_2O \rightarrow Na_2SO_4 + 4H_3BO_3$$

$$H_3BO_3 + 3C_2H_5OH \rightarrow B(OC_2H_5)_3 + 3H_2O$$

Memoduka: 0,2 г борной кислоты (или тетрабората натрия) помещают в фарфоровую чашку, прибавляют 1 см³ концентрированной серной кислоты, 3 см³ этанола, перемешивают и поджигают. При зажигании смесь горит пламенем, окаймленным зеленым цветом.

1. Реакция осаждения нитратом серебра AgNO₃ (образование осадка хлорида серебра и последующее его растворение в растворе 10 % гидроксида аммония)

$$AgNO_3 + NaCl \rightarrow AgCl \downarrow + NaNO_3$$

1.1. Полученный осадок хлорида серебра растворяют в 10 % растворе гидроксида аммония

$$AgCl\downarrow + 2 NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2 H_2O$$

Далее полученный раствор делят на две части:

1.2. К одной части раствора по каплям прибавляют концентрированную азотную кислоту

$$[Ag(NH_3)_2]Cl + 2HNO_3 \rightarrow AgCl \downarrow + 2NH_4NO_3$$

Наблюдают выпадение белого творожистого осадка.

1.3. К другой части раствора по каплям прибавляют концентрированный раствор иодида калия:

$$[Ag(NH_3)_2]Cl + KI + 2H_2O \rightarrow AgI \downarrow + KCl + 2NH_4OH$$

Наблюдают выпадение желтого осадка.

Memoduka: к 2 — 3 каплями раствора, содержащего хлорид-ионы и подкисленного азотной кислотой, прибавляют 3 — 4 капли нитрата серебра, наблюдают образование белого творожистого осадка хлорида серебра. Осадок растворят в 10 % растворе гидроксида аммония. Далее раствор делят на две части. К одной части раствора прибавляют 5 — 6 капель азотной кислоты и наблюдают выпадение осадка. Ко второй части раствора прибавляют 5 — 6 капель иодида калия и наблюдают выпадение желтого осадка.

Бромид-ион (Br⁻)

1. Реакция осаждения нитратом серебра AgNO₃

$$NaBr + AgNO_3 \rightarrow AgBr \downarrow + NaNO_3$$

Mетодика: к 2 - 3 каплями раствора, содержащего бромид-ионы и подкисленного азотной кислотой, прибавляют 3 - 4 капли нитрата серебра, наблюдают образование желтоватого осадка.

2. Реакция окисления хлорамином Б или хлорной водой

$$+ 2HCl \longrightarrow + NaCl + Cl_{2}$$

$$SO_{2} NH_{2}$$

$$2NaBr + Cl_{2} \longrightarrow 2NaCl_{2} + Br_{2}$$

Mетодика: к 2 каплями раствора, содержащего бромид-ионы, прибавляют 2 капли разбавленной хлороводородной кислоты, 3-5 капель хлороформа и 3-5 капель хлороформа окрашивается в желто-бурый цвет.

$$И$$
одид-ион (Γ)

1. Реакция осаждения нитратом серебра AgNO₃

$$NaI + AgNO_3 \rightarrow AgI \downarrow + NaNO_3$$

Mетодика: к 2 - 3 каплями раствора, содержащего иодид-ионы и подкисленного азотной кислотой, прибавляют 3 - 4 капли нитрата серебра, наблюдают выделение жёлтого осадка.

2. Реакция окисления хлоридом железа (III) FeCl₃ или нитритом натрия NaNO₂ в кислой среде

$$2NaI + 2FeCl_3 \rightarrow I_2 + 2FeCl_2 + 2NaCl$$

$$2NaI + 2NaNO_2 + 4H_2SO_4 \rightarrow I_2 + 2NO + 2Na_2SO_4 + 2H_2O$$

Mетодика: к 2 каплями раствора, содержащего иодид-ионы, прибавляют 1-2 капли разбавленной серной кислоты, 10 капель хлороформа, 3-4 капли раствора хлорида железа (III) или нитрита натрия, энергично встряхивают. Хлороформный слой окрашивается в розово-фиолетовый цвет. При прибавлении раствора крахмала появляется синяя окраска.

Ацетат-ион (
$$CH_3COO^-$$
)

1. Реакция этерификации с этиловым спиртом в присутствии концентрированной серной кислоты (демонстрационная)

$$2CH_3COONa + H_2SO_4 \rightarrow 2CH_3COOH + Na_2SO_4$$

 $CH_3COOH + C_2H_5OH \rightarrow CH_3COOC_2H_5 + H_2O$

Методика: к 20 капелям раствора, содержащего ацетат-ионы, прибавляют 10 капель концентрированной серной кислоты и 7 капель 95 % спирта, нагревают. Ощущается характерный запах этилацетата.

2. Реакция комплексообразования с хлоридом железа (III) FeCl₃

$$3CH_3COONa + FeCl_3 \rightarrow Fe(CH_3COO)_3 + 3NaCl$$

Mетодика: к 3 каплями нейтрального раствора, содержащего ацетат-ионы, прибавляют 4 - 5 капель раствора хлорида железа (III). Наблюдают образование красно-бурого окрашивание раствора.

Бензоат-ион (
$$C_6H_5COO^-$$
)

1. Реакция комплексообразования с хлоридом железа (III)

$$3C_6H_5COONa + 2FeCl_3 + 10H_2O \rightarrow 3HCl + 3NaCl + Fe(C_6H_5COO)_3 Fe(OH)_3 7H_2O \downarrow$$

Mетодика: к 3 каплями нейтрального раствора, содержащего бензоат-ионы, прибавляют 4 - 5 капель раствора хлорида железа (III). Наблюдают образование розово-желтого осадка.

Салицилат-ион (
$$C_6H_4(OH)COO^-$$
)

1. Реакция комплексообразования с хлоридом железа (III) FeCl₃

Mетодика: к 3 каплями раствора, содержащего салицилат-ионы, прибавляют 4-5 капель раствора хлорида железа (III), наблюдают появление сине-фиолетового или красно-фиолетового окрашивания раствора.

Нитрат-ион (NO_3^-)

1. Реакция с антипирином в среде концентрированной серной кислоты

$$\begin{array}{c} H_3C \\ \\ H_3C \\ \\ N \\ C_6H_5 \end{array} + H_2SO_4 + NaNO_3 \\ \\ H_3C \\ \\ N \\ C_6H_5 \end{array} + H_2O + NaHSO$$

Методика: в сухую фарфоровую чашку помещают 2 капли раствора, содержащего нитрат-ионы, прибавляют 1 каплю 5 % водного раствора антипирина и 4-8 капель концентрированной серной кислоты, осторожно перемешивают и наблюдают интенсивное красное окрашивание (последующее разбавление водой приводит к переходу красной окраски в карминово-красную).

2. Реакция с дифениламином

Mетодика: в сухую фарфоровую чашку (тигель) помещают кристаллик дифениламина, прибавляют несколько капель концентрированной серной кислоты и 1-2 капли раствора, содержащего нитрат-ионы, наблюдают появление синего окрашивания.

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Заполнить протоколы по качественному анализу анионов.
- 2. Выполнить практическую работу по анализу раствора неизвестного состава (УИРС)

Протокол № 3

Тема работы: <u>изучение качественных реакций на анионы CO_3^2 и HCO_3 , NO_2 , $S_2O_3^{2-}$, PO_4^{3-} , SO_4^{2-} , BO_3^{3-} , Cl, Br, I, NO_3 , CH_3COO , C_6H_5COO , $C_6H_4(OH)COO$ </u>

1. Реакция с хлороводородной кислотой на карбонат- или гидрокарбонат ионы

Уравнение реакции

Аналитический сигнал

Способ выполнения

2. Реакция осаждения карбонат- или гидрокарбонат ионов насыщенным раствором сульфата магния

Уравнение реакции

Аналитический сигнал

Способ выполнения

3. Реакция с фенолфталеином на карбонат- или гидрокарбонат ионы

Уравнения реакции

Аналитический сигнал

Способ выполнения

4. Реакция нитрит - ионов с дифениламином в среде концентрированной серной кислоты

Уравнение реакции

Аналитический сигнал

Способ выполнения

5. Реакция нитрит - ионов с разбавленной серной кислотой

Уравнение реакции

Аналитический сигнал

Способ выполнения

6. Реакция нитрит - ионов антипирином (реакция нитрозирования)

Уравнение реакции

Аналитический сигнал

Способ выполнения

7. Реакция нитрит - ионов с дифениламином в среде концентрированной серной кислоты

Уравнение реакции

Аналитический сигнал

Мешающие ионы

Способ выполнения

8. Реакция тиосульфат - ионов с хлороводородной кислотой

Уравнение реакции

Аналитический сигнал

Способ выполнения

9. Реакция осаждения тиосульфат - ионов раствором нитрата серебра

Уравнения реакций

Аналитический сигнал

Способ выполнения

10. Реакция окисления тиосульфат - ионов раствором йода

Уравнение реакции

полуреакции:

Аналитический сигнал Реакция осаждения сульфат - ионов хлоридом бария

Уравнение реакции

Аналитический сигнал

Способ выполнения

11. Реакция осаждения фосфат - ионов раствором нитрата серебра

Уравнение реакции

Растворимость осадка

Аналитический сигнал

Способ выполнения

12. Реакция осаждения фосфат - ионов магнезиальной смесью

Уравнение реакции

Аналитический сигнал

Способ выполнения

13. Реакция борат - ионов с этанолом (реакция этерификации)

Уравнение реакции

Аналитический сигнал

Условия проведения

Способ выполнения

14. Реакция осаждения хлорид - ионов нитратом серебра

1.1. Уравнение реакции

Аналитический сигнал

1.2. Растворение осадка

Способ выполнения

1.3. Уравнение реакци

Аналитический сигнал

1.4. Уравнение реакции

Аналитический сигнал

15. Реакция осаждения бромид - ионов нитратом серебра

Уравнение реакции

Аналитический сигнал

Способ выполнения

16. Реакция окисления бромид - ионов хлорамином Б или хлорной водой

Уравнение реакции

полуреакции:

Аналитический сигнал

Способ выполнения

17. Реакция осаждения иодид - ионов нитратом серебра

Уравнение реакции

Аналитический сигнал

Способ выполнения

18. Реакция окисления иодид - ионов хлоридом железа (III) или нитритом натрия в кислой среде

Уравнения реакции

полуреакции:

Аналитический сигнал

Условия проведения

Способ выполнения

19. Реакция нитрат - ионов с дифениламином

Уравнение реакции

Аналитический сигнал

Способ выполнения

20. Реакция нитрат - ионов с антипирином в среде концентрированной серной кислоты

Уравнение реакции

Аналитический сигнал

Условия проведения

Способ выполнения

21. Реакция ацетат - ионов с этиловым спиртом в присутствии концентрированной серной кислоты (реакция этерификации)

Уравнение реакции

Аналитический сигнал

Условия проведения

Способ выполнения

22. Реакция комплексообразования ацетат - ионов с хлоридом железа (III)

Уравнение реакции

Аналитический сигнал

Условия проведения

Способ выполнения

23. Реакция комплексообразования бензоат - ионов с хлоридом железа (III)

Уравнение реакции

Аналитический сигнал

Способ выполнения

24. Реакция комплексообразования салицилат - ионов с хлоридом железа (III)

Уравнение реакции

Аналитический сигнал

Способ выполнения

Протокол № 4

АНАЛИЗ РАСТВОРА, СОДЕРЖАЩЕГО НЕИЗВЕСТНЫЙ АНИОН (УИРС)

Форма отчета:

- уравнение реакции в молекулярно-ионной форме;
 - условия проведения реакций;
 - аналитический сигнал;
 - вывод об обнаружении аниона

Занятие № 3

ТЕМА: **КОНТРОЛЬНОЕ ЗАНЯТИЕ ПО ТЕМЕ «КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНА**ЛИЗ»

ЦЕЛЬ ЗАНЯТИЯ: закрепить теоретические знания и навыки студентов по теме «Качественный химический анализ».

Тематика контрольных вопросов для подготовки к собеседованию

- 1. Предмет, цели и задачи аналитической химии. Методы анализа.
- 2. Сильные и слабые электролиты. Способы выражения концентрации. Основные положения теории слабых и сильных электролитов. Активность и коэффициент активности. Ионная сила раствора.
- 3. Диссоциация воды. Ионное произведение воды. Водородный показатель рН.
- 4. Протолитическая теория кислот и оснований. Понятие кислоты и основания. Амфолиты.
- 5. Условия образования и растворения осадков. Произведение растворимости. Полнота осаждения. Факторы, влияющие на смещение гетерогенного равновесия (температура, ионная сила раствора, рН, процессы окисления-восстановления и комплексообразования).
- 6. Общая характеристика комплексных соединений. Константы нестойкости и устойчивости комплексных соединений.

- 7. Анализ катионов и анионов. Характерные и специфические реакции. Способы выполнения реакций. Аналитический сигнал.
- 8. Понятия аналитические реакции, аналитический сигнал. Требования к аналитическим реакциям.
- 9. Анализ катионов и анионов. Характерные (селективные и специфические реакции). Способы выполнения реакций.

ЛИТЕРАТУРА

- 1. Аналитическая химия : учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. Новосибирск : Новосибирский государственный технический университет, 2016. 76 с. ISBN 978-5-7782-2951-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г.К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия : учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов : Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия: учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва: Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М.А. Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей.

Занятие № 4

ТЕМА: ТИТРИМЕТРИЧЕСКИЙ АНАЛИЗ. СТАНДАРТИЗАЦИЯ ТИТРОВАННЫХ РАСТВОРОВ

ЦЕЛЬ ЗАНЯТИЯ: освоить стандартизацию титрованных растворов способом отдельных навесок на примере раствора хлороводородной кислоты и способом пипетирования на примере раствора трилона Б..

задачи:

- 1. Научиться брать точные навески веществ на аналитических весах, работать с мерной посудой, титровать.
- 2. Уметь рассчитать практическую концентрацию вещества при стандартизации титрованных растворов способом пипетирования и отдельных навесок.

ВОПРОСЫ К ЗАНЯТИЮ

- 1. Дайте определение «титрованный раствор».
- 2. Перечислите химическую посуду, относящуюся к точной мерной посуде.
- 3. Назовите способы выражения концентрации, которые используют для титрованных растворов.
- 4. Дайте определение процессу стандартизация раствора.
- 5. Назовите величину, которую устанавливают в ходе процесса стандартизации.
- 6. Приведите формулы расчета коэффициента поправки для растворов первичного и вторичного стандартов.
- 7. Классификация титриметрических методов анализа (основные уравнения, варианты титрования, способы титрования).
- 8. Теоретическая точка конца титрования (точка эквивалентности). Конечная точка титрования.
- 9. Способы индикации конечной точки титрования.
- 10. Кислотно-основное титрование. Титрованные растворы метода. Стандартные вещества.
- 11. Комплексонометрия. Титрованные растворы метода. Стандартные вещества.

ЛИТЕРАТУРА

- 1. Аналитическая химия: учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. Новосибирск: Новосибирский государственный технический университет, 2016. 76 с. ISBN 978-5-7782-2951-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г. К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия : учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов : Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст : электронный //

- Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия : учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва : Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М. . Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 7. Задачник для обучающихся по программам среднего профессионального образования по специальности 33.02.01. «Фармация» // Вихарева Е.В., Курбатова А.А., Колотова Н.В., Колобова М.П., Долбилкина Э.В., Буканова Е.В., Касьянов З.В., Непогодина Е.А. Пермь. 2021. 42 с.

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

ОБЩИЕ ПОНЯТИЯ ТИТРИМЕТРИЧЕСКОГО АНАЛИЗА

Титриметрический анализ объединяет группу методов количественного химического анализа, основанных на измерении объёма раствора реагента точной концентрации, необходимого для взаимодействия с определённым количеством анализируемого вещества.

Основной приём метода — *титрование* — заключается в постепенном добавлении к определяемому веществу раствора реагента точной концентрации до достижения эквивалентного соотношения между ними.

Момент окончания реакции между взаимодействующими веществами называется *точкой эквивалентности* или теоретической точкой конца титрования.

На практике в процессе титрования фиксируют *конечную точку титрования (КТТ)*. Для этого используют:

- 1. визуальный способ контроль течения химической реакции путём визуального наблюдения:
- 1.1. безындикаторный при использовании окрашенного титрованного раствора;
- 1.2. с помощью индикаторов веществ, способных к видимым изменениям в точке эквивалентности или вблизи неё.
- 2. *инструментальный способ* с помощью приборов по изменению какого-либо физического или физико-химического свойства раствора в процессе титрования.

Особенность индикаторов состоит в том, что свойства этих соединений должны совпадать со свойствами контролируемой системы.

Индикаторы характеризуются:

интервалом перехода окраски – пределы концентраций ионов водорода, ионов металла или вещества, при которых происходит изменение окраски индикатора, улавливаемое человеческим глазом;

показателем титрования — значение концентрации ионов водорода, ионов металла или вещества, при которых происходит наиболее резкое изменение окраски индикатора.

Количественные соотношения между реагирующими веществами выражаются *законом* э*квивалентов*: химические элементы и их соединения взаимодействуют в химических реакциях друг с другом в строго определённых массовых количествах, соответствующих их химическим эквивалентам.

Эквивалент (Э) — реальная или условная частица вещества X, которая эквивалентна одному атому водорода в кислотно-основной реакции или одному электрону в окислительно-восстановительной реакции (должна быть указана конкретная химическая реакция).

$$\Theta = f_{\Theta}(X)$$

 Φ актор эквивалентности (f_Э) — число, обозначающее, какая доля реальной частицы вещества эквивалентна одному атому водорода в кислотно-основной реакции или одному электрону в окислительно-восстановительной реакции.

$$f_{3}(X) = \frac{1}{z}$$
, где z - число эквивалентности.

При $f_9 = 1$ $\Theta = PV$ (реальная частица); при $f_9 < 1$ $\Theta = VV$ (условная частица).

Масса 1 моль эквивалента называется молярной массой эквивалента: $M_9 = f_9$ М

Важным следствием закона эквивалентов является *основное уравнение титриметрии*: $C_3^1 \cdot V^1 = C_3^2 \cdot V^2$

Произведение молярной концентрации эквивалента (C_3) на объём (V) раствора есть величина постоянная для растворов обоих реагирующих веществ.

Для титриметрических определений используют химические реакции, удовлетворяющие следующим требованиям:

- 1. реакция должна быть стехиометричной (протекать строго по уравнению);
- 2. протекать количественно, до конца, т.е. константа равновесия реакции должна быть достаточно велика ($Kp \ge 10^8$);
- 3. реакция должна протекать быстро, чтобы в любой момент титрования состояние равновесия наступало практически мгновенно;
- 4. взаимодействие титранта с анализируемым веществом должно быть специфичным. Реакция не должна осложняться побочными реакциями, обусловленными свойствами вспомогательных веществ и внешними условиями;
- 5. должна быть возможность чёткого и точного фиксирования конца титрования.

Титриметрические методы широко применяются в практике химического анализа, поскольку обладают рядом несомненных достоинств: чувствительны, точны, воспроизводимы, просты, доступны, экспрессны, разнообразны, многовариантны: по числу титрантов, индикаторов, вариантов титрования. Большинство методов безвредны, экономичны, избирательны. К числу недостатков следует отнести неустойчивость некоторых титрованных растворов, токсичность (соли ртути), дефицитность и большую стоимость реагентов (соли серебра).

Растворы точной концентрации, предназначенные для титрования, называют *титрованными* растворами или *титрованиами*.

КЛАССИФИКАЦИЯ ТИТРИМЕТРИЧЕСКИХ МЕТОДОВ

Таблица 1

1. По типу протекающих при титровании химических реакций

Кислотно-основное титрование	$H_3O^+ + OH^- \rightarrow 2H_2O$
(протолитометрия)	
Окислительно-восстановительное титрование (редоксметрия)	$OK_1 + BOC_2 \rightarrow OK_2 + BOC_1$
Осадительное титрование (седиметрия)	$mK^{n+} + nA^{m-} \rightarrow K_mA_n \downarrow$
Комплексиметрическое титрование	M^{m+} + $n L^- \rightarrow [ML_n]^{m-n}$
(комплексиметрия)	

Таблица 2

2. По приёмам (вариантам) титрования

Прямое титрование	Непосредственное титрование анализируемого вещества		
	титрованным раствором		
Обратное титрование (по	Взаимодействие анализируемого вещества с избытком титранта,		
остатку)	непрореагировавшую часть которого титруют вторым титрованным		
	раствором		
Заместительное	Взаимодействие анализируемого вещества со вспомогательным		
титрование	реагентом, в результате которого выделяется эквивалентное		
(по заместителю)	количество продукта (заместителя) реакции, который титруют		
	титрованным раствором		
Реверсивное титрование	Титрование известного объёма титранта раствором анализируемого		
	вещества		

Таблица 3

3. По способу титрования

Способ	Титрование титрантом отдельных равных частей (аликвот) раствора		
пипетирования	анализируемого вещества, приготовленного из точной навески вещества в		
	мерной колбе		
Способ отдельных	Титрование титрантом нескольких близких по массе точных навесок		
навесок	анализируемого вещества		

СПОСОБЫ ВЫРАЖЕНИЯ КОНЦЕНТРАЦИИ ТИТРОВАННОГО РАСТВОРА

- 1. Молярная концентрация (C_M) количество растворённого вещества (n(X), моль) в 1 дм³ раствора.
- 2. Молярная концентрация эквивалента (C_{\Im}) количество эквивалентов вещества ($n_{{}_{\mathsf{ЭКВ}}}(X)$, моль) в 1 дм 3 раствора.

$$C_M = \frac{n(X)}{V}; \qquad \qquad C_{\mathfrak{Z}} = \frac{n_{\mathfrak{Z}(X)}}{V}; \quad C_M = \frac{m}{M \cdot V}; \qquad C_{\mathfrak{Z}} = \frac{m}{M_{\mathfrak{Z}} \cdot V};$$

где $\,$ m - масса вещества (г), $\,$ M и $\,$ M $_{\rm B}$ - молярная масса и молярная масса эквивалента вещества, $\,$ V - объём раствора (дм $^{\rm 3}$)

$$C_M = C_{\mathfrak{I}} \cdot f_{\mathfrak{I}}$$

Если фактор эквивалентности вещества равен 1, то $C_M = C_3$.

Далее во всех методиках приведена концентрация титранта, выраженная в виде молярной концентрации эквивалента (C_3).

 $\overline{3. \ Tump\ pacmвopa\ (T_{TP})}$ – масса вещества титранта в ε (a) в 1см 3 раствора.

$$T_{TP} = \frac{a_{B-Ba}}{V_{p-pa}} = \frac{C_{9 B-Ba} \cdot M_{9 B-Ba}}{1000}$$

4. *Титр раствора по определяемому веществу* ($T_{TP/X}$, титр соответствия, титриметрический фактор пересчёта) — масса определяемого вещества в ε (a_x), соответствующая 1 см³ титрованного раствора.

$$T_{TP/X} = \frac{C_{9 TP} \cdot M_{9 X}}{1000} = \frac{C_{9 TP} \cdot f_{9} \cdot M_{X}}{1000} = \frac{a_{X}}{V_{TP}}$$

К установочным веществам для приготовления стандартных титрованных растворов предъявляются определённые требования:

- 1. вещество должно быть химически чистым;
- 2. состав его должен строго соответствовать химической формуле;
- 3. вещество должно быть устойчиво при хранении в твёрдом виде и в растворах;
- 4. молярная масса эквивалента должна быть достаточно большой.

Химические соединения, удовлетворяющие этим требованиям, называют первичными стандартами; титрованные растворы, приготовленные из них — стандартными (приготовленными). Титрованные растворы, приготовленные из других соединений, называют стандартизованными (установленными), поскольку их точная концентрация устанавливается путём стандартизации.

КОЭФФИЦИЕНТ ПОПРАВКИ

Титрованные растворы характеризуются коэффициентом поправки K_{Π} — числом, показывающим, во сколько раз концентрация приготовленного раствора отличается от теоретически заданной концентрации.

Рекомендуемая величина K_n для проведения анализа

1. Государственная Фармакопея XIV издания:

$$K_{II} = 0.9800 \div 1.0200$$

2. ГОСТ «Методы приготовления титрованных растворов»,

$$K_{II} = 0.9700 \div 1.0300$$

При отклонении величины K_{π} от указанных пределов титрованный раствор необходимо разбавить: $V_{H2O} = (K_{\pi} - 1)^{-}V_{TP}$ или укрепить: $m_{\text{B-Ba}} = (1 - K_{\pi})^{-}a_{\text{B-Ba}}$

СПОСОБЫ ПРИГОТОВЛЕНИЯ ТИТРОВАННЫХ РАСТВОРОВ

Существует несколько способов приготовления титрованных растворов:

- по точной навеске (из первичных стандартов, соответствующие 4 требованиям: 1) химически чистое (х.ч.); 2) точно соответствует химической формуле; 3) неизменны при хранении в сухом виде и в растворе; 4) имеют большую массу эквивалента);
- по приблизительной навеске (из вторичных стандартов, которые не соответствуют первичным стандартам);
- из фиксанала;
- путём разведения растворов с известной концентрации.

Для повышения точности количественных аналитических определений применяют:

- «контрольное» титрование титрование точно известного количества стандартного образца анализируемого вещества;
- «холостое» титрование (контрольный опыт) титрование раствора по составу идентичного анализируемому (вспомогательные вещества, растворитель, индикатор), но без определяемого вещества;
- титрование «со свидетелем» титрование анализируемого раствора до окраски «свидетеля», представляющего титруемый раствор в конечной точке титрования (соответствующий объём растворителя, индикатор, 1 капля титрованного раствора).

Приготовление титрованных растворов

Операции	Стандартные растворы	Стандартизованные растворы
Приготовление	По точной навеске	По приблизительной навеске
Расчет навески	$a_{ ext{reop}} = T_{ ext{TP}} \cdot V_{ ext{MK}}$	$a_{\text{reop}} = T_{\text{TP}} \cdot V_{\text{MK}}$
вещества		(+ 5-10 %)
Взвешивание	На аналитических весах	На технических весах
навески		
	$T = \frac{a_{\text{практ}}}{V_{\text{MK}}}$ - масса исходного	$T_{TP} = \frac{C_{TP} \cdot M_{\vartheta}}{1000}$ - Macca
Расчёт титра	вещества, содержащаяся в 1 см ³	определяемого вещества,
- m see see p	раствора	соответствующая 1 см ³
		титрованного раствора
Расчёт Кп	$K_{\Pi} = \frac{a_{\Pi p}}{a_{T}} = \frac{C_{\Pi p}}{C_{T}} = \frac{T_{\Pi p}}{T_{T}} = \frac{V_{T}}{V_{\Pi p}}$	$K_{\Pi} = \frac{a_{\Pi \text{P. CT.B-Ba}}}{T_{\text{TP}/_{\text{CT B-By}}} \cdot V_{\text{TP}}}; K_{\Pi} = \frac{V_{\text{CT}} \cdot K_{\text{CT}}}{V_{\text{TP}}}$
Примеры веществ	$H_2C_2O_4$ $2H_2O$, Na_2CO_3 ,	H ₂ SO ₄ , HCl, NaOH, KOH, AgNO ₃ ,
	C_6H_5COOH , $Na_2B_4O_7$ · $10H_2O$,	Na ₂ S ₂ O ₃ · 5H ₂ O, KMnO ₄ , NaNO ₂ ,
	Na ₂ C ₂ O ₄ , C ₈ H ₅ KO ₄ , KBrO ₃ , MgSO ₄	NH ₄ SCN, Ce(SO ₄) ₂ ·4H ₂ O, I ₂ ,
	\cdot 7H ₂ O, ZnSO ₄ \cdot 7H ₂ O, KIO ₃ ,	Hg(NO ₃) ₂ , Na ₂ H ₂ Y · 2H ₂ O
	K ₂ Cr ₂ O ₇ , NaCl	
Методика	Точную навеску х.ч. вещества,	1 1
приготовления	рассчитанную для приготовления	
	раствора заданной концентрации,	приготовления раствора
	количественно переносят в	
	мерную колбу определенного объема и растворяют в	переносят в сосуд,
	небольшом количестве	предварительно откалиброванный на необходимый объем и
		растворяют в небольшом
	_	количестве дистиллированной
		воды (при необходимости
	метки, закрывают пробкой и	
	перемешивают.	объем раствора доводят
	•	дистиллированной водой до
		метки и перемешивают. Далее
		проводят стандартизацию
		раствора.
		•

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. На основании данных титриметрических исследований заполнить протоколы.
- 2. Решить задачи по стандартизации титрованного раствора.

Лабораторная работа № 1

Тема работы: $\underline{Cmandapmusauus\ 0,1\ моль/дм^3\ pacmворa\ хлороводородной кислоты по карбонату натрия (способ отдельных навесок)}$

Приготовление 0,1 моль/дм³ раствора хлороводородной кислоты

Методика: рассчитанный объём исходной хлороводородной кислоты отмеривают мерным цилиндром и переносят в сосуд, объём которого предварительно откалиброван с помощью мерного цилиндра и отмечен на сосуде карандашом по стеклу. Сосуд закрывают пробкой, перемешивают раствор и наклеивают этикетку.

Стандартизация раствора хлороводородной кислоты

Mетодика: около 0.05-0.07 г (точная навеска) карбоната натрия количественно переносят в колбу для титрования, растворяют в 25 см³ дистиллированной воды, прибавляют 2-3 капли раствора метилового оранжевого и титруют приготовленным 0.1 моль/дм³ раствором хлороводородной кислоты до перехода жёлтой окраски в розовато-оранжевую.

Лабораторная работа № 2

Тема работы: $\underline{Cmandapmuзaция\ 0.05\ моль/дм^3\ pacmвopa\ mpилона\ E\ no\ pacmвopy\ сульфата}$ магния

Приготовление 0,05 моль/дм³ титрованного раствора трилона Б

Mетодика: рассчитанную навеску трилона Б взвешивают на технохимических весах с точностью до 0.02 г, переносят в емкость на $1~{\rm дm}^3$, растворяют в небольшом количестве дистиллированной воды, доводят объём раствора водой до $1~{\rm дm}^3$, перемешивают.

Приготовление 0,05 моль/дм³ раствора сульфата магния

Mетодика: рассчитанную точную навеску сульфата магния взвешивают в бюксе на аналитических весах. Затем навеску переносят в мерную колбу. Взвешивают пустой бюкс. По разности вычисляют массу навески (a_{np}). В мерной колбе навеску растворяют в небольшом объеме дистиллированной воды, затем доводят объём раствора водой до $100~{\rm cm}^3$, перемешивают.

Стандартизация 0,05 моль/дм³ раствора трилона Б

Mетодика: точный объём (5 — 10 см³ — индивидуальное задание) раствора сульфата магния пипеткой из мерной колбы переносят в колбу для титрования, прибавляют 5 см³ аммиачного буферного раствора, 0,1 г сухой индикаторной смеси эриохром чёрный и титруют приготовленным 0,0500 моль/дм³ раствором трилона Б до перехода красно-фиолетовой окраски раствора в синюю. Титрование повторяют 3 раза.

ПРИМЕР РЕШЕНИЯ ЗАДАЧ

<u>Пример 3.</u> 10,00 г карбоната натрия растворили в 100,00 г воды. Рассчитайте массовую долю растворенного вещества в растворе.

Решение

1. Вычисляют массу полученного раствора

$$m=m_1+m_2,$$

где: m₁ - масса вещества;

m₂ - масса растворителя

$$m = 10 + 100 = 110,00$$
 г раствора

2. Рассчитывают массовую долю вещества, составляя пропорцию:

110-100%

$$10 - x\%$$
 $x = \omega = \frac{m_{seuqecmsa}}{m_{pacmsopa}} \cdot 100\% = \frac{10 \cdot 100}{110} = 9,09\%$

<u>Пример 6</u>. Приготовили 5,00 дм 3 0,1 моль/дм 3 раствора с $K_\Pi = 1,1110$. Какой объем воды необходимо добавить, чтобы раствор стал точно 0,1000 моль/дм 3 ?

Решение

$$V_{H,O} = (K_{\Pi} - 1) \cdot V_{pacmsopa} = (1,1110 - 1) \cdot 5000 = 555,00 \, c_{M}^{3}$$

<u>Пример 10.</u> Вычислите молярную концентрацию эквивалента раствора азотной кислоты, если титр данного раствора равен $0,002700 \text{ г/см}^3$.

Решение

1. Записывают выражение титра раствора HNO₃

$$T_{HNO_3} = \frac{C_{\mathcal{I}_{HNO_3}} \cdot M_{\mathcal{I}_{HNO_3}}}{1000} = 0,002700 \ \epsilon/cm^3$$

2. Из данной формулы выводят значение $C_{9_{mxo}}$

$$C_{\mathcal{I}_{HNO_3}} = \frac{T_{HNO_3} \cdot 1000}{M_{\mathcal{I}_{HNO_3}}}$$

$$f_{\mathcal{I}_{HNO_3}} = 1; M_{\mathcal{I}_{HNO_3}} = M_{HNO_3} = 63 \text{ г/моль}$$
 $C_{\mathcal{I}_{HNO_3}} = \frac{0,002700 \cdot 1000}{63} = 0,4285 \text{ моль/дм}^3$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Вычислите молярную концентрацию эквивалента раствора сульфата меди (II), если в $1,00 \text{ см}^3$ этого раствора содержится 0,0200 г сульфата меди (II) (с учетом fa = 1/2 и fa = 1 соответственно).
- 2. Вычислите массу серной кислоты, содержащейся в 200,00 см³ раствора, если титр раствора равен 0,004904 г/см³.
- 3. Найдите титр раствора пятиводного тиосульфата натрия с молярной концентрацией 0,025 моль/дм 3 .
- 4. Рассчитайте какой объем воды нужно добавить к 25,00 см 3 раствора йода с концентрацией $C(1/2\ I_2)=0,0250\$ моль/дм 3 , чтобы получить раствор с концентрацией $C(1/2\ I_2)=0,0200\$ моль/дм 3 .
- 5. Приготовили $3{,}00$ дм³ $0{,}1$ моль/дм³ раствора с Кп=1,2880. Рассчитайте сколько необходимо добавить воды, чтобы раствор стал точной концентрации $0{,}1000$ моль/дм³.

Протокол № 4

- 1. Тема работы: Стандартизация 0,1 моль/дм³ раствора хлороводородной кислоты по карбонату натрия (способ отдельных навесок)
- 2. Метод анализа:
- 3. Реакция, лежащая в основе стандартизации, с указанием факторов эквивалентности веществ и молярных масс эквивалентов:
- 4. Вариант титрования:
- 5. Индикатор:
- 6. Способ выполнения стандартизации:
- 7. Приготовление раствора титранта (методику см. в «Практикуме по аналитической химии»):
- 7.1. Рассчитывают навеску кислоты для приготовления титранта заданной концентрации и объёма по формуле: $a_{\text{теор,HCl}} =$

- 7.2. Определяют плотность исходной кислоты (ареометром), по справочнику находят массовую долю (%) и рассчитывают массу кислоты в исходном растворе кислоты:
 - в 100 г раствора кислоты содержится тинсі
 - в X г раствора кислоты содержится $a_{\text{теор.HCl}}$ X $_{\text{HCl}} = \frac{a_{\text{теор.HCl}} \cdot 100}{m_{\text{HCl}}} =$
- 7.3. Вычисляют объём кислоты для приготовления раствора титранта: $V = \frac{X_{HCl}}{\rho}$
- 8. Установление точной концентрации и Кп раствора хлористоводородной кислоты (методику см. в «Практикуме по аналитической химии»):
- 8.1. Взятие и расчёт точной навески карбоната натрия

$$\begin{array}{ll} a^1_{\text{Na}_2\text{CO}_3} = & m_{\text{6+H}} - m_{\text{6}} = \\ a^2_{\text{Na}_2\text{CO}_3} = & m_{\text{6+H}} - m_{\text{6}} = \end{array}$$

8.2. Объёмы стандартизуемого раствора хлороводородной кислоты, израсходованные на три параллельных титрования:

$$V_1 =$$
; $V_2 =$

8.3. Расчёт поправочного коэффициента и практической концентрации хлороводородной кислоты.

$$K_{\pi \ HCl}^{1} = \qquad \qquad K_{\pi \ HCl}^{2} = \qquad \qquad \overline{K}_{\pi \ HCl} =$$

$$C_{np. HCl} =$$

Протокол № 5

Тема работы: $Стандартизация 0,05 моль/дм^3$ раствора трилона Б по стандартному раствору магния сульфата

- 3. Метод анализа:
- 4. Реакция, лежащая в основе стандартизации с указанием факторов эквивалентности веществ и их молярных масс эквивалентов:
- 5. Вариант титрования:
- 6. Индикатор:
- 7. Способ выполнения стандартизации:
- 8. Условия выполнения стандартизации и вспомогательные вещества:
- 9. Приготовление титрованного раствора трилона Б.

Расчёт теоретической навески трилона Б для приготовления раствора объёмом 1 дм 3 (методику см. в «Практикуме по аналитической химии»). $C_{\text{теор. тр.Б}} = 0,05$ моль/дм 3

$$a_{\text{reop. Tp.B}} =$$

10. Приготовление стандартного раствора сульфата магния объёмом 100 см^3 (методику см. в «Практикуме по аналитической химии»). $C_{\text{теор. MgSO}_4} = 0,05 \text{ моль/дм}^3$. Расчёт теоретической марески MgSO.

навески MgSO₄
$$a_{\text{теор. MgSO}_4} =$$

Взятие и расчёт точной навески MgSO₄

$$a_{\text{np. MgSO}_4} =$$

11. Вычисление K_{π} раствора MgSO₄ и его практической концентрации.

$$K_{\pi MgSO_4} = C_{\pi p. MgSO_4} =$$

12. Установление практической концентрации и коэффициента поправки титранта трилона Б (методику см. в «Практикуме по аналитической химии»). $V_{MgSO_4} =$

Объёмы титранта трилона Б, израсходованные на три параллельных титрования:

$$V_1 =$$
; $V_2 =$; $V_3 =$; $\overline{V}_{TD\overline{D}} =$

Расчёт поправочного коэффициента и практической концентрации титрованного раствора трилона Б.

$$K_{\pi \text{ Tp.B}} = C_{\pi p. \text{ Tp.B}} =$$

Занятие № 5

ТЕМА: ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ ВЕЩЕСТВ В РАСТВОРАХ ВАРИАНТОМ ПРЯМОГО ТИТРОВАНИЯ

ЦЕЛЬ ЗАНЯТИЯ: освоить определение массовой доли веществ в растворах прямым вариантом титрования различными титриметрическими методами

ЗАДАЧИ:

- 1. Выполнить лабораторные работы по определению массовой доли веществ в растворах перманганатометрическим, нитритометрическим и трилонометрическим методами с использованием прямого варианта титрования.
- 2. Научиться решать расчетные задачи по определению массовой доли веществ в титриметрическом анализа.

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

- 1. Окислительно-восстановительное титрование. Основные уравнения и титрованные растворы методов. Варианты титрования. Примеры определения веществ прямым вариантом титрования.
- 2. Перманганатометрия. Основное уравнение метода. Определяемые вещества, варианты и условия титрования.
- 3. Нитритометрия. Основные уравнения. Определяемые вещества, варианты и условия титрования.
- 4. Комплексонометрическое титрование. Основные уравнения. Примеры определения веществ прямым вариантом титрования.
- 5. Окислительно-восстановительное титрование (перманганатометрия, йодометрия, броматометрия, нитритометрия). Титрованные растворы методов и основные уравнения.
- 6. Определение окислителей и восстановителей в перманганато- и йодометрии.
- 7. Индикаторы окислительно-восстановительного титрования, их характеристика (обратимые и необратимые редоксиндикаторы, специфические, внутренние и внешние индикаторы).
- 8. Комплексиметрическое титрование (меркуриметрия, комплексонометрия). Основные уравнения и титранты методов. Индикация конечной точки титрования.

ЛИТЕРАТУРА

1. Аналитическая химия : учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. — Новосибирск : Новосибирский государственный технический университет, 2016. — 76 с. — ISBN 978-5-7782-2951-8. — Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. — URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). — Режим доступа: для авторизир. пользователей

- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г. К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия: учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов: Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия: учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва: Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М. . Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 7. Задачник для обучающихся по программам среднего профессионального образования по специальности 33.02.01. «Фармация» // Вихарева Е.В., Курбатова А.А., Колотова Н.В., Колобова М.П., Долбилкина Э.В., Буканова Е.В., Касьянов З.В., Непогодина Е.А. Пермь. 2021. 42 с.

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

Лабораторная работа № 1

 Тема
 работы:
 Определение
 массовой
 доли
 пероксида
 водорода
 в
 растворе

 перманганатометрическим титрованием

Методика: точный объём раствора пероксида водорода в количестве 10 см³ отмеривают из бюретки в мерную колбу вместимостью 100,00 см³. Прибавляют небольшое количество дистиллированная воды, перемешивают. Доводят объём раствора дистиллированная водой до круговой метки и вновь перемешивают. Из мерной колбы пипеткой отмеривают точный объём приготовленного раствора пероксида водорода (5 – 10 см³ – индивидуальное задание) и помещают в колбу для титрования. Для создания кислой реакции среды в колбу вносят цилиндром 5 см³ серной кислоты (1:5) и медленно титруют 0,1000 моль/дм³ раствором перманганата калия до слабо-розовой окраски, устойчивой около 30 сек. Титрование повторяют не менее трёх раз. Проводят расчет массовой доли пероксида водорода в растворе.

Лабораторная работа № 2

Тема работы: Определение массовой доли хлорида кальция в растворе методом трилонометрического титрования *Методика:* точный объём раствора хлорида кальция (5 – 10 см³ – индивидуальное задание) помещают в колбу для титрования, прибавляют 5 см³ аммиачного буферного раствора, 0,1 г сухой индикаторной смеси – эриохрома тёмно-синиено и титруют 0,0500 моль/дм³ раствором трилона Б до перехода красно-фиолетовой окраски раствора в сине-фиолетовую. Титрование повторяют 3 раза. Проводят расчет массовой доли хлорида кальция в растворе.

Лабораторная работа №3

Тема работы: *Определение массовой доли стрептоцида в образце нитритометрическим титрованием*

Методика: около 0,1 г стрептоцида взвешивают на ручных весах, переносят навеску в сухой бюкс. Определяют массу бюкса с навеской. Навеску переносят в колбу для титрования и взвешивают пустой бюкс. По разности двух взвешиваний рассчитывают точную навеску (а_{пр}) стрептоцида. Операцию взятия навески повторяют два раза. В колбу для титрования вносят цилиндром 10 см³ дистиллированной воды, 10 см³ хлороводородной кислоты (1:2). После растворения навески прибавляют 30 см³ воды, 10 см³ бромида калия и смешанный индикатор (4 капли раствора тропеолина 00 и 2 капли метиленовой сини). Раствор охлаждают до 18 – 20 °С и титруют раствором 0,1000 моль/дм³ нитрита натрия до голубой окраски. Титрование повторяют 2 раза, результаты титрования записывают. Титрование повторяют 2 раза. Проводят расчет массовой доли стрептоцида в растворе.

ПРИМЕР РЕШЕНИЯ ЗАДАЧ

Алгоритм решения

- 1. Записать уравнение реакции, лежащей в основе определения.
- 2. Установить вариант и способ титрования, фактор эквивалентности и молярную массу эквивалента определяемого вещества.
- 3. Вычислить титр раствора по определяемому веществу.
- 4. Рассчитать массовое содержание определяемого вещества путем умножения вычисленного титра на объем израсходованного титранта.

<u>Пример 2.</u> Вычислите массу гидроксида калия, содержащегося в навеске, если на ее титрование расходуется 20,15 см³ раствора серной кислоты с молярной концентрацией эквивалента 0,2000 моль/дм³.

Решение

- 1. $2KOH + H_2SO_4 = K_2SO_4 + 2H_2O$
- 2. Прямое титрование, способ отдельных навесок, $f_{\rm O}$ (КОН) = 1, $M_{\rm O}$ (КОН)=56,11 г/моль

^{3.}
$$T_{H_2SO_4/KOH} = \frac{C_{\Im H_2SO_4} \cdot M_{\Im KOH}}{1000} = \frac{0,20 \cdot 56,11}{1000} = 0,01120_{Z/CM}$$

4.
$$Q_{KOH} = T_{H_2SO_4/KOH} \cdot V_{H_2SO_4} = 0,0112 \cdot 20,15 = 0,2256\varepsilon$$

<u>Пример</u>. Рассчитайте объём раствора нитрита натрия с титром 0,003450 г/см³, который израсходовали на титрование навески сульфаниловой кислоты массой 0,1200 г.

Решение:

1.
$$R - NH_2 + NaNO_2 + 2HCl \leftrightarrow [R - N^+] \equiv N[Cl^- + NaCl + 2H_2O]$$

2. f_2 (сульфаниловой кислоты) = 1; M_2 (СК) = M = 173,19г/моль

$$f_2(NaNO_2) = 1; M_2(NaNO_2) = M = 69,002 / моль$$

$$T_{NaNO_{2}} = \frac{C_{\Im(NaNO_{2})} \cdot M_{\Im(NaNO_{2})}}{1000} \Rightarrow$$

$$\Rightarrow C_{NaNO_{2}} = \frac{T_{NaNO_{2}} \cdot 1000}{M_{NaNO_{2}}} = \frac{0,003450 \cdot 1000}{69,00} = 0,0500 \text{моль} / \text{дм}^{3}$$

3.
$$T_{NaNO_{CK}} = \frac{C_{NaNO_2} \cdot M_{CK}}{1000} = \frac{0,0500 \cdot 173,19}{1000} = 0,008660 \varepsilon / cm^3$$

4.
$$V_{NaNO_2} = \frac{a_{CK}}{T_{NaNO_2/CK}} = \frac{0,1200}{0,008660} = 13,86cm^3$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Рассчитайте, какую навеску (г) безводной соды нужно взять, чтобы на ее титрование израсходовалось $25,00 \text{ см}^3 0,1000 \text{ моль/дм}^3$ раствора серной кислоты.
- 2. Вычислите массу (г) уксусной кислоты в растворе, если на титрование раствора затрачивается $29,50 \text{ см}^3 0,1000 \text{ моль/дм}^3$ раствора гидроксида натрия.
- 3. На титрование 10,00 см³ раствора хлороводородной кислоты расходуется 11,50 см³ 0,1000 моль/дм³ раствора гидроксида натрия. Рассчитайте массовую долю (%) хлороводородной кислоты.
- 4. Рассчитайте граммовое содержание уксусной кислоты (г) в растворе, если на титрование затрачивается $20,00~{\rm cm}^3$ гидроксида натрия с молярной концентрацией эквивалента $0,0500~{\rm monb/дm}^3$.
- 5. На титрование ионов железа (II) в растворе, полученном из лактата железа массой 0,2115 г, затратили 22,50 см³ раствора перманганата калия с молярной концентрацией эквивалента 0,1000 моль/дм³. Рассчитайте массовую долю (%) ионов железа (II) в препарате.
- 6. В мерной колбе объемом 500,00 см³ приготовили раствор из 5г пероксида водорода. На титрование 25,00 см³ этого раствора затратили 38,00 см³ раствора перманганата калия с молярной концентрацией эквивалента 0,05 моль/дм³ и $K_{\pi} = 1,1250$. Рассчитайте массовую долю (%) пероксида водорода в образце.
- 7. Рассчитайте массу навески (г) сульфаниловой кислоты (М сульфаниловой кислоты = 173,19 г/моль), если на ее титрование израсходовали 12,00 см³ раствора нитрита натрия с молярной концентрацией 0,1020 моль/дм³.
- 8. На титрование навески 0,3000 г препарата стрептоцида (М стрептоцида = 172,21 г/моль) израсходовали 8,50 см³ раствора нитрита натрия с молярной концентрацией 0,1010 моль/дм³. Рассчитайте массовую долю (%) стрептоцида в образце.
- 9. Навеску образца 0,4112 г, содержащего перманганат калия, растворили в воде в мерной колбе

- объемом $100,00 \text{ см}^3$. На титрование $10,00 \text{ см}^3$ этого раствора в кислой среде израсходовали $12,50 \text{ см}^3$ раствора нитрита натрия с молярной концентрацией эквивалента $0,1 \text{ моль/дм}^3$ и Кп = 0,9803. Рассчитайте массовую долю (%) перманганата калия в образце.
- 10. Рассчитайте массовую долю (%) сульфата железа(Π) в растворе, если на титрование 15,00 см³ его израсходовали 20,50 см³ раствора нитрита натрия с молярной концентрацией 0,1 моль/дм³ и Кп = 0,9903.
- 11. Рассчитайте навеску (г) нитрата серебра, необходимую для приготовления 500,00 см³ раствора с молярной концентрацией эквивалента 0,0500 моль/дм³.
- 12. Навеску 0.3838 г технического бромида натрия растворили и оттитровали 23.80 см³ раствора нитрата серебра с $T_{AgNO/NaBr} = 0.006000$ г/см³. Рассчитайте массовую долю (%) бромида натрия в образце.
- 13. Вычислите массовую долю (%) сульфата меди (II) (M = 249,68 г/моль) в образце, если на титрование его навески массой 0,3768 г израсходовали 14,25 см³ 0,1 моль/дм³ раствора трилона Б с Кп = 1,0010.
- 14. Навеску шестиводного хлорида кальция массой 2,0000 г растворили в воде в мерной колбе объемом 200,00 см 3 . На титрование 10,00 см 3 этого раствора израсходовали 9,80 см 3 0,05 моль/дм 3 раствора трилона Б с $K_{\rm II}=0,9902$. Рассчитайте массовую долю (%) шестиводного хлорида кальция.
- 15. Вычислите массовую долю (%) лактата кальция ($M=308,30\ {\rm г/моль}$) в лекарственном препарате, если на навеску препарата массой 0,2000 г израсходовали 10,00 см³ 0,05 моль/дм³ трилона Б с $K_{\pi}=1,0020$.
- 16. Рассчитайте массовую долю (%) семиводного сульфата магния в образце, если на титрование навески образца массой 0,3438 г израсходовали 12,35 см³ 0,1000 моль/дм³ раствора трилона Б.

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. На основании данных титриметрических исследований заполнить протоколы.
- 2. Решить задачи на прямой вариант титрования.

Протокол № 6

- 1. Тема работы: *Определение массовой доли пероксида водорода в растворе* перманганатометрическим методом
- 2. Метод анализа:
- 3. Реакция, лежащая в основе определения с указанием $f_{3 \text{кв.}}$ $H_2 O_2$ и молярной массы эквивалента (M_2) (методику см. в «Практикуме по аналитической химии»):
- 4. Вариант титрования:
- 5. Индикатор:
- 6. Вспомогательные вещества и условия проведения анализа:
- 7. Навеска (объём) пероксида водорода.

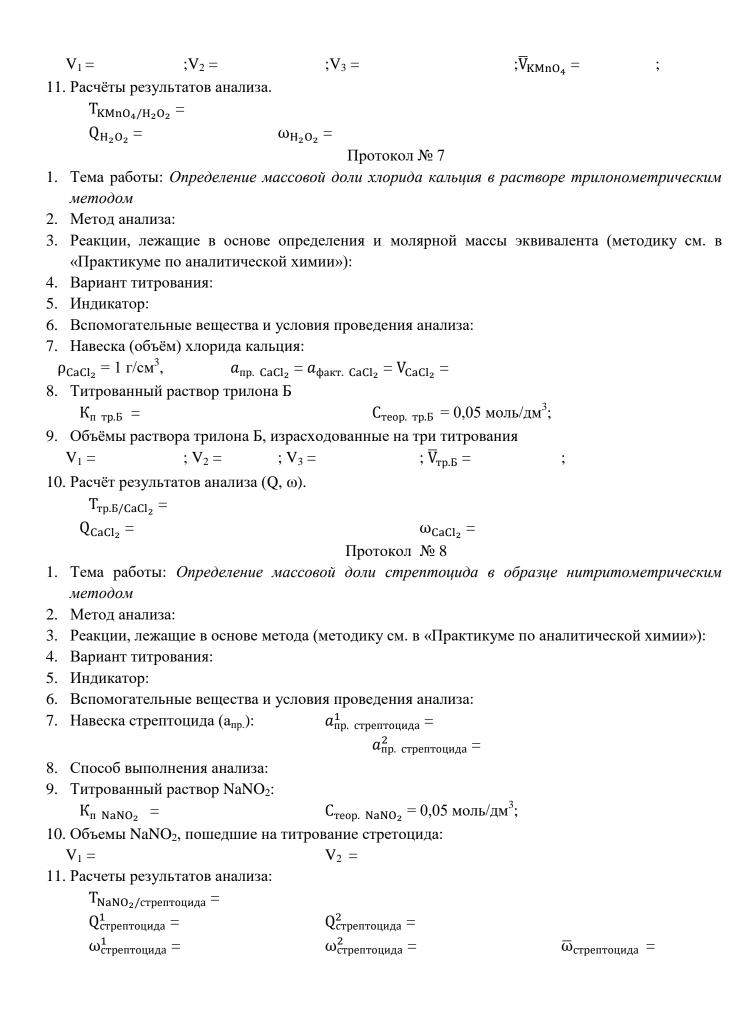
$$\rho_{\rm H_2O_2} = 1 \, \rm \Gamma/cm^3$$

$$a_{\rm H_2O_2} = V_{\rm H_2O_2} =$$

- 8. Способ выполнения работы:
- 9. Объём мерной колбы, объём пипетки

$$V_{M.K.} =$$

$$V_{\text{пип}} =$$


$$a_{\phi a \kappa \tau} =$$

10. Титрованный раствор КМпО₄

$$K_{\pi \ KMnO_4} =$$

$$C_{\text{теор. KMnO}_4} = 0.1 \text{ моль/дм}^3$$

Объёмы титрованного КМпО₄, пошедшие на титрование

Занятие № 6

ТЕМА: ОПРЕДЕЛЕНИЕ МАССОВОЙ ДОЛИ ВЕЩЕСТВ В РАСТВОРАХ ВАРИАНТОМ ЗАМЕСТИТЕЛЬНОГО И ОБРАТНОГО ТИТРОВАНИЯ

ЦЕЛЬ ЗАНЯТИЯ: освоить определение массовой доли веществ в растворах методами кислотно-основного и осадительного титрования с использованием вариантов заместительного и обратного титрования.

ЗАДАЧИ

- 1. Освоить классификацию вариантов и способов титрования.
- 2. Выполнить лабораторную работу по определению массовой доли борной кислоты в растворе методом кислотно-основного титрования (вариант замещения).
- 3. Выполнить лабораторную работу по определению массовой доли бромида калия в растворе аргентометрическим методом (вариант обратного титрования).
- 4. Научиться решать расчетные задачи по определению массовой доли веществ заместительным и обратным вариантами титрования.

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

- 1. Дайте определение кислотно-основному титрованию. Приведите примеры определения веществ заместительным вариантом титрования.
- 2. Приведите основное уравнение аргентометрического титрования. Дайте классификацию метода в зависимости от условий титрования и применяемого индикатора.
- 3. Кислотно-основное титрование, основное уравнение метода. Титрованные растворы алкали- и ацидиметрии. Варианты титрования.
- 4. Осадительное титрование (основные уравнения аргентометрии, меркурометрии, тиоционатометрии). Варианты титрования в аргентометрии. Примеры.
- 5. Индикаторы осадительного титрования, их характеристика (осадительные, адсорбционные, комплексообразующие).

ЛИТЕРАТУРА

- 1. Аналитическая химия : учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. Новосибирск : Новосибирский государственный технический университет, 2016. 76 с. ISBN 978-5-7782-2951-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г. К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия : учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов : Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. —

- URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия: учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва: Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М. . Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 7. Задачник для обучающихся по программам среднего профессионального образования по специальности 33.02.01. «Фармация» // Вихарева Е.В., Курбатова А.А., Колотова Н.В., Колобова М.П., Долбилкина Э.В., Буканова Е.В., Касьянов З.В., Непогодина Е.А. Пермь. 2021. 42 с.

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

Лабораторная работа № 1

Тема работы: *Определение массовой доли борной кислоты в растворе алкалиметрическим титрованием (титрование по заместителю)*

Memoдика: 3-8 см³ раствора борной кислоты помещают в колбу для титрования, прибавляют 5 см³ глицерина (1:1), нейтрализованного по фенолфталеину, 1-2 капли раствора фенолфталеина и титруют 0,1000 моль/дм³раствором гидроксида натрия до розовой окраски раствора. Прибавляют ещё 1 см³ нейтрализованного глицерина. В случае исчезновения розовой окраски продолжают титрование до появления розовой окраски. Титрование повторяют 3 раза. Проводят расчет массовой доли борной кислоты в растворе.

Лабораторная работа № 2

Тема работы: Определение массовой доли бромида калия в растворе аргентометрическим титрованием (метод Фольгарда, обратное титрование)

Memoдика: точный объём раствора бромида калия (5 — 10 см 3 — индивидуальное задание) отмеривают из бюретки в колбу для титрования, прибавляют из бюретки 5 см 3 0,0500 моль/дм 3 раствора нитрата серебра, 10 капель раствора железо-аммониевых квасцов (ЖАК) и титруют 0,0500 моль/дм 3 раствором тиоцианата аммония до розовой окраски раствора над осадком. Титрование повторяют 3 раза. Проводят расчет массовой доли бромида калия в растворе.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

<u>Пример 3</u>. Навеску оксида кальция растворили в мерной колбе на $100,00\,$ см³ в хлороводородной кислоте с концентрацией $0,1\,$ моль/дм³ и K_n =0,9800. На $15,00\,$ см³ полученного раствора затратили $10,00\,$ см³ гидроксида натрия с концентрацией $0,1\,$ моль/дм³ и $K_{\Pi NaOH}\,=\,0,9800$. Определите массу оксида кальция, содержащегося в навеске.

Решение

$$I.$$
 $CaO + 2HCl = CaCl_2 + H_2O + (HCl)$
I титрант остаток I титранта
 $HCl + NaOH = NaCl + H_2O$

ост. І титр. ІІ титрант

2. Обратное титрование, способ пипетирования

$$f_{2CaO} = 1/2$$
; $M_{2CaO} = 1/2$ $M_{CaO} = 1/2 \times 56 = 28,00$ г/моль

3. Расчёт содержания CaO в аликвотной части раствора (в 15,00 см³ раствора)

$$Q_{CaO} = T^{T}_{HCI/CaO}(V_{HCI} \cdot K_{\Pi_{HCI}} - V_{NaOH} \cdot K_{\Pi_{NaOH}} = \frac{M_{\mathcal{I}_{CaO}}}{1000}(V_{HCI} \cdot K_{\Pi_{HCI}} \cdot C_{HCI}^{meop} - V_{NaOH} \cdot K_{\Pi_{NaOH}} \cdot C_{NaOH}^{meop}) = \frac{M_{\mathcal{I}_{CaO}}}{1000}(15 \cdot 0.9800 \cdot 0.1000 - 10 \cdot 0.9800 \cdot 0.1000) = \frac{28}{1000}(1.47 - 0.98) = 0.01372$$

<u>Пример 2.</u> Определите массу свинца (II) в растворе, если после прибавления $25,00 \text{ см}^3 0,0100 \text{ моль/дм}^3$ раствора трилона Б, на его избыток израсходовали $5,50 \text{ см}^3 0,0100 \text{ моль/дм}^3$ раствора сульфата магния.

Решение:

1.
$$Pb^{2+} + H_2Y^{2-} = PbY^{2-} + 2H^+ + (H_2Y^{2-})$$

остаток

$$H_2Y^{2-} + Mg^{2+} = MgY^{2-} + 2H^+$$

остаток

- $2. f_{\Im}(Pb^{2+})=1; M_{\Im}(Pb^{2+})=M=207,21$ г/моль
- 3. Вариант обратного титрования, способ отдельных навесок.
- 4. Рассчитывают массу Pb²⁺ по формуле обратного титрования:

$$Q_{pb^{2+}} = \frac{M_{pb^{2+}}[V(TpE) \cdot C(TpE) - V_{MgSQ_4} \cdot C_{MgSQ_4}]}{1000} = \frac{207,21 \cdot (25,00 \cdot 0,01 - 5,50 \cdot 0,01)}{1000} = 0,0404$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Рассчитайте массовую долю (%) карбоната кальция, если к навеске 0,2000 г прибавили 20,00 см 3 0,206 моль/дм 3 раствора хлороводородной кислоты с K_n =0,9940. Остаток кислоты оттитровали 6,50 см 3 раствора гидроксида натрия с концентрацией 0,2 моль/дм 3 и Кп=1,0156.
- 2. К навеске образца массой 0,1832 г, содержащего гидроксид натрия, добавили избыток 50,00 см³ раствора серной кислоты с молярной концентрацией эквивалента 0,1 моль/дм³ и $K_{\Pi} = 0,9872$. Остаток кислоты оттитровали 15,60 см³ гидроксида калия с молярной концентрацией 0,1000 моль/дм³. Рассчитайте массовую долю (%) гидроксида натрия в образце.
- 3. На титрование раствора, полученного растворением 3,1580 г гидроксида калия расходуется

- $17,45\ {\rm cm}^3\ 0,1000\ {\rm моль/дm}^3\ {\rm хлороводородной}\ {\rm кислоты}.$ Рассчитайте массовую долю (%) гидроксида калия в образце.
- 4. В мерной колбе объемом 1000,00 см³ растворили неизвестное количество дигидрата щавелевой кислоты. На титрование 50,00 см³ этого раствора расходуется 60,90 см³ 0,1025 моль/дм³ раствора гидроксида натрия. Определите массу (г) щавелевой кислоты (М $H_2C_2O_4-2H_2O=126,08$ г/моль).
- 5. Навеску образца, содержащего нитрат кальция, массой 0,3456 г обработали раствором щавелевой кислоты, выпавший осадок отфильтровали и промыли дистиллированной водой. Полученный осадок растворили в кислоте и оттитровали 10,90 см³ раствора перманганата калия с молярной концентрацией эквивалента 0,1 моль/дм³ и $K_{\pi} = 1,0110$. Рассчитайте массовую долю (%) нитрата кальция в образце.
- 6. К раствору йодида калия, содержащему серную кислоту, прибавили 20,00 см³ перманганата калия с молярной концентрацией эквивалента 0,1 моль/дм³ и Кп = 1,1000 и выделившийся йод оттитровали 25,90 см³ тиосульфата натрия. Рассчитайте молярную концентрацию раствора тиосульфата натрия.
- 7. Рассчитайте массовую долю (%) формальдегида в образце, если его навеску массой 0,2879 г растворили в воде, добавили 50,00 см³ раствора йода с молярной концентрацией эквивалента 0,1000 моль/дм³. На титрование остатка йода израсходовали 15,20 см³ раствора тиосульфата натрия с молярной концентрацией 0,1000 моль/дм³.
- 8. Рассчитайте массовую долю (%) хлорида натрия в изотоническом растворе (p=1,0 г/см³), если к $10,00~\text{см}^3$ раствора прибавили $50,00~\text{см}^3~0,05~\text{моль/дм}^3$ раствора нитрата серебра с Кп = 1,0080, на титрование избытка которого израсходовали $21,00~\text{см}^3~0,05~\text{моль/дм}^3$ раствора тиоцианата аммония с $K_{\pi} = 0,9820$.

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. На основании данных титриметрических исследований заполнить протоколы.
- 2. Решить задачи на заместительный и обратный варианты титрования.

Протокол № 8

- 1. Тема работы: Определение массовой доли борной кислоты в растворе алкалиметрическим титрованием (титрование по заместителю)
- 2. Метод анализа:
- 3. Реакция, лежащая в основе определения с указанием $f_{_{3KB}}$. борной кислоты и молярной массы эквивалента (M_{\odot}) (методику см. в «Практикуме по аналитической химии»):
- 4. Индикатор:
- 5. Вспомогательные вещества и условия проведения анализа:
- 6. Навеска (объём) борной кислоты: $a_{\text{пр. H}_3\text{BO}_3} = V_{\text{H}_3\text{BO}_3} =$
- 7. Способ выполнения работы:
- 8. Титрованный раствор NaOH

$$K_{\pi \text{ NaOH}} = C_{\text{Teop. NaOH}} = 0,1 \text{ моль/дм}^3;$$

9. Объёмы титрованного раствора NaOH, пошедшие на титрование:

$$V_1 = ; V_2 = ; V_3 = ; \overline{V}_{NaOH} =$$

10. Расчёты результатов анализа.

$$T_{NaOH/H_3BO_3} = Q_{H_3BO_3} = ω_{H_3BO_3} =$$
 Протокол № 9

- 1. Тема работы: Определение массовой доли бромида калия в растворе аргентометрическим титрованием (метод Фольгарда, обратное титрование)
- 2. Метод анализа:
- 3. Реакции, лежащие в основе определения и молярной массы эквивалента (методику см. в «Практикуме по аналитической химии»):
- 4. Вариант титрования:
- 5. Индикатор:
- 6. Вспомогательные вещества и условия проведения анализа:
- 7. Навеска (объём) бромида калия.

$$\rho_{\text{KBr}} = 1 \text{ r/cm}^3, \qquad a_{\text{KBr}} = V_{\text{KBr}} =$$

- 8. Способ выполнения работы:
- 9. Титрованные растворы:

раствор AgNO₃

$$K_{\Pi \ AgNO_3} = C_{Teop. \ AgNO_3} = 0,05 \ \text{моль/дм}^3; \ V_{AgNO_3} =$$
 раствор NH_4SCN

 $K_{\text{п NH}_4\text{SCN}} = C_{\text{теор. NH}_4\text{SCN}} = 0.05 \text{ моль/дм}^3;$

Объёмы NH₄SCN, пошедшие на титрование избытка первого титрованного раствора AgNO₃:

$$V_1 = ; V_2 = ; V_3 = ; \overline{V}_{NH_4SCN} = ;$$

10. Расчёты результатов анализа Q, ω.

$$T_{TP/KBr} = Q_{KBr} = \omega_{KBr} =$$

Занятие № 7

ТЕМА: КОНТРОЛЬНОЕ ЗАНЯТИЕ ПО ТЕМЕ «ТИТРИМЕТРИЧЕСКИЕ МЕТОДЫ АНАЛИЗА»

ЦЕЛЬ ЗАНЯТИЯ: закрепить теоретические знания и навыки студентов по теме «Титриметрические методы анализа».

Тематика контрольных вопросов для подготовки к собеседованию

- 1. Титриметрический анализ, достоинства и недостатки. Основной приём и основной закон титриметрии.
- 2. Точка эквивалентности (теоретическая точка конца титрования), конечная точка конца титрования. Различные способы индикации в титриметрических методах анализа.
- 3. Классификация титриметрических методов по типу реакций, лежащих в основе метода, по варианту титрования. Примеры.
- 4. Классификация титриметрических методов анализа по типу химических реакций, лежащих в основе определения. Достоинства и недостатки методов титриметрии.
- 5. Способы выражения концентрации титрованных растворов. Поправочный коэффициент и способы его установления: укрепление и разбавление титрованных растворов.
- 6. Кислотно-основные индикаторы, их рабочие характеристики: интервал перехода окраски, показатель титрования. Способы выбора индикатора для титрования: эмпирический, по кривой титрования.
- 7. Индикаторы осадительного титрования, их характеристика (осадительные, адсорбционные и комплексообразующие).

- 8. Индикаторы комплексонометрического титрования, их характеристика (специфические, металлохромные и рН-индикаторы).
- 9. Методы кислотно-основного титрования: классификация, основное уравнение методов, требования к реакциям.
- 10. Ацидиметрия: обоснование и основное уравнение метода. Варианты титрования, возможности метода, достоинства и недостатки.
- 11. Методы окислительно-восстановительного титрования: классификация, титрованных растворов факторы эквивалентности и молярные массы эквивалентов, основные уравнения методов, требования к применяемым реакциям.
- 12. Перманганатометрия, обоснование и основное уравнение метода. Условия, варианты и возможности метода. Примеры определения восстановителей.
- 13. Нитритометрия: обоснование и основные уравнения метода. Условия и возможности методов нитрозирования и диазотирования.
- 14. Йодометрия: обоснование и основное уравнение, титрованные растворы и возможности метода. Определение окислителей и востановителей. Примеры.
- 15. Броматометрия: обоснование и основное уравнение метода. Варианты броматометрического определения органических соединений.
- 16. Аргентометрия, обоснование и основное уравнение метода. Классификация по характеруприменяемых индикаторов.
- 17. Комплексонометрия: основное уравнение метода, варианты титрования, условия, индикация, возможности метода.
- 18. Способы приготовления титрантов. Приготовление титрованного раствора: хлороводородной кислоты, гидроксида натрия, перманганата калия, нитрита натрия, нитрата серебра, трилона Б.
- 19. Определение методом кислотно-основного титрования: обоснование, уравнения, вариант титрования, индикация, расчётные формулы: борной кислоты, гидрокарбоната натрия.
- 20. Определение пероксида водорода перманганатометрией: обоснование, уравнения реакций, вариант титрования, индикация, условия, расчётные формулы.
- 21. Определения нитритометрическим методом. Обоснование метода, уравнение реакции, вариант титрования, условия титрования, индикация, расчетные формулы: стрептоцида, новокаина.
- 22. Определение бромида калия методом Фольгарда: обоснование, уравнения реакций, вариант титрования, условия, индикация, расчётные формулы.
- 23. Определение массовой доли сульфата магния в растворе комплексонометрическим методом, обоснование, уравнение реакции, вариант титрования, индикация, условия, расчётные формулы.

Занятие № 8

ТЕМА: ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ АНАЛИЗА. МОЛЕКУЛЯРНО-АБСОРБЦИОННЫЕ МЕТОДЫ АНАЛИЗА. ФОТОКОЛОРИМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ ХЛОРИДА КОБАЛЬТА В РАСТВОРЕ

ЦЕЛЬ ЗАНЯТИЯ: закрепить знания обучающихся по фотометрическим методам анализа.

ЗАДАЧИ

- 1. Получить навыки работы на фотоколориметрах.
- 2. Научиться проводить количественный анализ индивидуальных веществ фотометрическим методом.

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

- 1. Сформулируйте закон Бугера-Ламберта-Бера.
- 2. Приведите принципиальную схему устройства фотометра.
- 3. Физический смысл коэффициента светопоглощения. Факторы, влияющие на него.
- 4. Способы расчёта концентраций в фотоэлектроколориметрии
- 5. Инструментальные методы анализа, их особенности и возможности. Использование в качественном и количественном анализе. Примеры. Классификация инструментальных методов анализа (по измеряемому аналитическому сигналу, способу измерения). Достоинства и недостатки.
- 6. Основные способы определения концентрации веществ в инструментальных методах анализа (по градуировочному графику, метод одного стандарта, метод добавок стандарта). Примеры использования.
- 7. Оптические методы анализа. Определение и классификация (по характеру взаимодействия электромагнитного излучения с веществом, по используемой области электромагнитного спектра).
- 8. Молекулярно-абсорбционные методы анализа. Обоснование. Оптическая плотность и пропускание, связь между ними. Электронные спектры поглощения. Колориметрия, фотоколориметрия, спектрофотометрия. Сущность, используемые приборы. Возможности, достоинства, недостатки. Основной закон светопоглощения, его математическое выражение. Причины отклонения от закона Бугера Ламберта Бера. Удельный и молярный коэффициенты светопоглощения, их физический смысл и значение, связь между ними.
- 9. Основные этапы и оптимальные условия фотометрических определений (выбор фотометрической реакции, аналитической длины волны, концентрации вещества и толщины поглощающего слоя, раствора сравнения). Требования к фотометрическим реакциям. Способы определения концентрации веществ в фотометрии на примере определения содержания хлорида кобальта (II) в растворе.

ЛИТЕРАТУРА

- 1. Аналитическая химия: учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. Новосибирск: Новосибирский государственный технический университет, 2016. 76 с. ISBN 978-5-7782-2951-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г. К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия: учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов: Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст: электронный //

- Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия: учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва: Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М. . Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- **7.** Задачник для обучающихся по программам среднего профессионального образования по специальности 33.02.01. «Фармация» // Вихарева Е.В., Курбатова А.А., Колотова Н.В., Колобова М.П., Долбилкина Э.В., Буканова Е.В., Касьянов З.В., Непогодина Е.А. Пермь. 2021. 42 с.

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

В зависимости от способа фиксирования поглощения молекулярно-абсорбционные методы подразделяются на визуальные (колориметрия) и фотоэлектрические (фотоколориметрия и спектрофотометрия).

Колориметрический метод основан на визуальном сравнении интенсивности окрасок исследуемого и стандартного растворов.

Фотоколориметрический метод основан на измерении количества поглощенного веществом немонохроматического излучения (потока фотонов с разными частотами).

Спектрофотометрический метод основан на измерении количества поглощенного веществом монохроматического излучения (потока фотонов с одинаковой частотой).

Таблица 5 Основные величины, используемые в фотометрии

Величина	Сим- вол	Определение	Формула	Размер- ность
Интенсивность	I	Количество поглощенной энергии при длине волны спектральной линии		
Пропускание	Т	Отношение интенсивностей прошедшего и падающего излучений	$T = \frac{I_t}{I_0}$	%

Оптическая плотность (поглощение, экстинкция)	A (D)	Десятичный логарифм отношения интенсивностей падающего и прошедшего излучений	$A = \lg \frac{I_0}{I_t} = \lg \frac{1}{T}$ $= -\lg T$	
Молярный коэффициент поглощения	3	Оптическая плотность одномолярного раствора вещества при толщине слоя 1 см.	$\epsilon_{\lambda} = \frac{A}{C_{M} \cdot l}$	дм ³ · моль ⁻¹ · см ⁻¹
Удельный коэффициент поглощения	E _{1CM}	Оптическая плотность однопроцентного раствора вещества при толщине слоя 1 см.	$E_{1\text{CM}}^{1\%} = \frac{A}{C_{\%} \cdot l}$	дм ³ ·г ⁻¹ · см ⁻¹ ·10
Толщина слоя	1			СМ

Величина молярного коэффициента поглощения (Е) отражает способность вещества поглощать свет, зависит от природы вещества и длины волны поглощаемого излучения, характеризует чувствительность фотометрических определений.

Графическая зависимость оптической плотности или молярного коэффициента поглощения от длины волны или частоты падающего света называется спектром поглощения.

s – полуширина полосы поглощения (характеризует степень размытости поглощения).

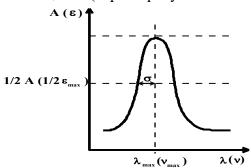


Рис.1. Графическая зависимость оптической плотности или молярного коэффициента поглощения от длины волны или частоты падающего света

Прибор для измерения светопоглощения состоит из ряда узлов, соединенных в определенной последовательности.

В зависимости от исследуемой области спектра используют разные источники, селекторы и детекторы.

В современных регистрирующих приборах световой поток делится на два одинаковых пучка, один из которых проходит через исследуемый раствор, а другой - через раствор сравнения, причем разность интенсивностей световых потоков, прошедших через кюветы, сравнивается автоматически. Таким образом, измеряют не абсолютное значение оптической плотности, а разность оптических плотностей исследуемого раствора и раствора сравнения.

Раствором сравнения могут быть растворители (вода, этанол, хлороформ и др.), раствор, содержащий все компоненты, что и в измеряемом растворе, за исключением компонента,

подлежащего определению (прямая фотометрия) или стандартный раствор (дифференциальная фотометрия).

Характеристика фотометрических методов

Таблица 6

	Фотоколориметрия	Спектрофотометрия	
Приборы	Фотоэлектроколориметры (КФК-3-01-30М3; КФК-3КМ; КФК-5М; КФК-2МП; КФК-2, 3; ПромЭкоЛаб ПЭ-5300в; ПЭ-5400ви)	Спектрофотометры (В-1100 Эковью; СФ-2000, 2000-02; Unico 1200, 2100, 2800, 2804, 2803, 2802S; XION 500; DR- 2800, 5000 HACH LANGE)	
Область спектра	Видимая	Видимая и ультрафиолетовая	
Источник излучения	Лампа накаливания или галогенная	В видимой области - лампа накаливания, в ультрафиолетовой - "водородная", "дейтериевая" лампа.	
Селектор	Светофильтры, выделяющие световой поток определенного диапазона длин волн (полихроматическое излучение).	Монохроматор (призмы и дифракционные решетки), выделяющий луч света определенной длины волны (монохроматическое излучение)	
Кюветы	Стеклянные	Кварцевые	
Детектор	Фотоэлемент	Фотоэлемент	
Объекты анализа	Окрашенные вещества	Бесцветные и окрашенные вещества	

Каждое вещество характеризуется своей системой энергетических уровней, поэтому спектры веществ различаются как по числу полос, так и по их положению в шкале длин волн, что лежит в основе идентификации веществ.

Качественный анализ вещества фотометрическим методом включает:

- 1. Определение оптической плотности при указанной длине волны;
- 2. Определение удельного или молярного показателя поглощения при максимальной длине волны;
- 3. Сравнение полученного спектра со спектром стандартного вещества.

Количественный анализ сводится к следующему:

Навеску анализируемого образца растворяют в подходящем растворителе, при необходимости переводят с помощью вспомогательного реагента в окрашенное соединение и измеряют его оптическую плотность при условиях, указанных в соответствующей методике. После чего определяют концентрацию раствора одним из способов, приведенных ниже.

Основным условием для количественного анализа вещества является соблюдение закона Бугера-Ламберта-Бера: количество электромагнитного излучения, поглощенного веществом, прямо пропорционально концентрации поглощающих частиц и толщине слоя.

Математическое выражение основного закона светопоглощения:

1. в экспоненциальной форме $I_t = I_0 \cdot e^{-kCl}$

2. в логарифмической форме
$$A = k^1 \cdot C \cdot l$$
, $\left(k^1 = \frac{k}{23}\right)$;

где k – молярный (е) или удельный (Е) коэффициент поглощения

Графическая зависимость оптической плотности от концентрации поглощающих частиц называется градуировочным графиком.

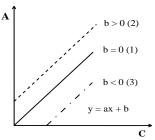


Рис. 2. Графическая зависимость оптической плотности от концентрации поглощающих частиц

Полученная прямая (при подчинении раствора закону Бугера-Ламберта-Бера) описывается уравнением y = ax + b, где: x - концентрация раствора; a - коэффициент, равный коэффициенту поглощения (тангенс угла наклона прямой); b - отрезок на оси оптической плотности, отсекаемый прямой, т.е. значение оптической плотности раствора сравнения.

Содержание анализируемых веществ рассчитывают одним из приведенных способов:

1. Способ градуировочного графика

Готовят серию эталонных растворов анализируемого вещества, измеряют их оптическую плотность при определенной длине волны, по полученным данным строят график в координатах A - C. Измерив оптическую плотность определяемого раствора A_X , по градуировочному графику методом интерполяции находят искомую концентрацию вещества в растворе C_X .

Градуировочные графики необходимо периодически проверять и каждый раз чертить заново для нового прибора и новой серии реактивов.

Значения коэффициентов поглощения находят экспериментальным путем или в нормативной документации.

3. Способ стандарта

Способ заключается в измерении оптических плотностей анализируемого раствора A_X и стандартного раствора A_{CT} при одном режиме работы прибора (с одинаковым раствором сравнения). $C_X = \frac{c_{CT} \cdot A_X}{A_{CT}}$

4. Способ добавок стандарта

Способ заключается в измерении оптической плотности анализируемого раствора A_X до и после добавки стандартного раствора. $C_X = \frac{C_{CT} \cdot A_X}{A_{X+CT} - A_X}$

Последовательность фотометрических определений

- 1. Подготовка анализируемого образца: взятие точной навески вещества, растворение и при необходимости проведение фотометрической реакции для получения окрашенного соединения.
- 2. Приготовление стандартного раствора вещества.
- 3. Приготовление серии эталонных растворов путём взятия и разведения аликвотных частей стандартного раствора и проведения фотометрической реакции.
- 4. Выбор аналитической длины волны путём измерения оптической плотности эталонного раствора со средней концентрацией при разных длинах волн (светофильтрах). По полученным

данным строят график зависимости оптической плотности раствора от длины волны. Для дальнейшей работы выбирают длину волны, для которой наблюдается максимум оптической плотности.

5. Выбор толщины фотометрируемого слоя (кюветы) путём измерения оптической плотности этого же эталонного раствора при аналитической длине волны в кюветах с толщиной от 0,1 до 5 см. Основным критерием выбора кювет является оптимальное значение оптической плотности, которое должно находиться в пределах 0,2 - 0,8. Кюветы, применяемые для испытуемого и контрольного растворов, должны быть одинаковыми и иметь одну и ту же спектральную пропускаемость.

До и после работы кюветы следует вымыть спиртоэфирной смесью, затем дистиллированной водой, убрать излишки жидкости с наружной стороны кюветы фильтровальной бумагой. Перед заполнением кюветы её следует сполоснуть небольшой порцией исследуемого раствора, чтобы его концентрация не изменилась вследствие разбавления водой. Жидкость наливается в кювету не ниже указанной на ней черты, что позволяет избежать ошибок, связанных с неодинаковыми процессами отражения и рассеяния светоизлучения. Обращаться с кюветами нужно осторожно, брать их рекомендуется за непрозрачные нерабочие грани. Не следует надолго оставлять кюветы с раствором.

- 6. Измерение оптических плотностей эталонных растворов от меньшей концентрации к большей при выбранных оптимальных условиях.
- 7. Построение градуировочного графика по полученным результатам и расчёт коэффициентов поглощения.
- 8. Измерение оптической плотности анализируемого раствора.
- 9. Расчёт содержания определяемого вещества (по градуировочному графику, по стандартному веществу и с учетом коэффициента светопоглощения).

Лабораторная работа № 1.

Тема работы: Определение массовой доли хлорида кобальта (II) в растворе

Приготовление стандартного 10 % раствора хлорида кобальта

Memoduka: 10 г (точная навеска) хлорида кобальта (II) в количестве взвешивают на аналитических весах, переносят в мерную колбу объемом 100,00 см³, растворяют в небольшом количестве дистиллированной воды с добавлением 20 см³ 2 моль/дм³ H_2SO_4 , доводят водой до метки и перемешивают.

Приготовление эталонных растворов

Memoduka: в пять мерных колб объемом 25,00 см³ вносят из бюретки 2, 4, 6, 8, 10 см³ приготовленного 10 % раствора хлорида кобальта (II), прибавляют 1 см³ 2 моль/дм³ раствора серной кислоты, доводят объёмы мерных колб водой до метки, перемешивают.

Выбор аналитической длины волны

Методика: измеряют оптическую плотность эталонного раствора № 3 на фотоколориметре в кювете толщиной 1 см относительно раствора сравнения при разных длинах волн (светофильтрах). В качестве раствора сравнения используют дистиллированную воду. Проводят два параллельных измерения, результаты которых заносят в таблицу.

По полученным данным строят график зависимости оптической плотности раствора от длины волны. Для дальнейшей работы выбирают ту длину волны $\lambda_{\text{мах}}$, при которой наблюдается максимум оптической плотности.

Измерение оптических плотностей эталонных растворов

Методика: измеряют оптическую плотность приготовленных эталонных растворов в кювете толщиной 1 см при выбранной аналитической длине волны относительно раствора сравнения, проводят два параллельных измерения и заносят результаты в таблицу.

Рассчитывают удельный коэффициент поглощения для каждого эталонного раствора: $E_i = \frac{A_i}{C_{\%} \cdot l}$

Из пяти рассчитанных значений удельных коэффициентов поглощения находят среднее значение: $\overline{\mathbf{E}} = \frac{1}{n} \sum_{i=1}^{i=n} \mathbf{E}_i^{\lambda_{max}}$:

Построение градуировочного графика:

Строят градуировочный график, откладывая на оси абсцисс концентрацию растворов С (%), а на оси ординат - оптическую плотность A.

Определение концентрации хлорида кобальта (II) в растворе:

Memoduka: точный объём раствора (индивидуальное задание) помещают в мерную колбу вместимостью 25 см³, прибавляют 1 см³ 2 моль/дм³ раствора серной кислоты доводят объём водой до метки, перемешивают. Измеряют оптическую плотность полученного раствора при ранее найденных условиях.

- 1. По градуировочному графику находят концентрацию С (%) анализируемого раствора.
- 2. Рассчитывают концентрацию анализируемого раствора по значению удельного коэффициента поглощения $E_{1\text{cm}}^{1\%}$ $C_{\%} = \frac{A}{\overline{E}_{1}}$
- 3. Рассчитывают концентрацию анализируемого раствора по способу стандарта, используя экспериментальные данные выдранного эталонного раствора (A_{CT} , C_{CT}) $C_X = \frac{C_{CT} \cdot A_X}{A_{CT}}$

ПРИМЕР РЕШЕНИЯ ЗАДАЧ

<u>Пример 2.</u> Оптическое поглощение раствора хлорида кобальта (II) в кювете толщиной 2 см равно 0,470. Стандартный раствор, содержащий $5 \cdot 10^{-3}$ моль/дм³ этого же вещества в кювете толщиной 3 см, имеет оптическую плотность 0,760. Определите молярную концентрацию раствора анализируемого вещества.

Решение

Расчёт концентрации проводят, используя способ стандарта:

$$C_X = \frac{C_{CT} \cdot \ell_{CT} \cdot A_X}{\ell_X \cdot A_{CT}} = \frac{5 \cdot 10^{-3} \cdot 3 \cdot 0,470}{2 \cdot 0,760} = 4,64 \cdot 10^{-3} \text{ моль/дм}^3$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Оптическая плотность раствора окрашенного соединения, содержащего 1 мг/дм³ ионов железа (III) в монохроматическом свете с толщиной слоя 3 см равна 0,450. Определите молярный коэффициент светопоглощения ионов железа (III).
- 2. Оптическая плотность окрашенного соединения железа (II) с концентрацией $1,79-10^{-4}$ моль/дм³ с толщиной светопоглощающего слоя 5 см равна 0,75. Рассчитайте молярный коэффициент светопоглощения.
- 3. Молярный коэффициент светопоглощения водного раствора хлорида меди (II) равен 100 дм³-моль⁻¹-см⁻¹. В 1000 см³ раствора содержится 0,002 моль соли. Рассчитайте оптическую плотность раствора в кювете с толщиной 20 мм.
- 4. При длине волны 485 нм коэффициент молярного светопоглощения комплексного соединения

- алюминия с ализарином равен $1,6-10^4$ дм 3 -моль $^{-1}$ -см $^{-1}$. Рассчитайте толщину кюветы, если оптическая плотность раствора при концентрации ионов алюминия $1-10^{-5}$ моль/дм 3 равна 0,8.
- 5. При определении ионов марганца (II) в виде перманганат-ионов оптическая плотность раствора с молярной концентрацией $7,59\ 10^{-6}\ \text{моль/дм}^3$ в кювете с толщиной слоя 3 см равна 0,152. Определите молярный коэффициент поглощения.
- 6. Коэффициент молярного поглощения комплексного соединения свинца (II) с дитизоном равен 6,8*10⁴ дм³хмоль⁻¹хсм⁻¹ при длине волны 485 нм. Определите, какую кювету необходимо взять для фотометрирования, чтобы оптическая плотность раствора была не менее 0,05 при содержании ионов алюминия 1,47*10⁻⁶ моль/дм³.

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. На основании данных фотометрического анализа заполнить протоколы.
- 2. Решить задачи на фотометрическое определение.

Протокол № 9

Тема работы: Определение массовой доли хлорида кобальта (II) в растворе Метод основан на измерении количества поглощённого полихроматического излучения раствором хлорида кобальта (II) (определение по собственной окраске). $M_{\text{CoCl}_2 \times 6\text{H}_2\text{O}} = 237,93$

г/моль

1. Измерение оптической плотности стандартного раствора хлорида кобальта средней концентрации

Таблица 1 Зависимость оптической плотности раствора хлорида кобальта от длины волны

№ свето- фильтра	λ светофильтра, нм	A_1	A_2	Ā
1	315			
2	364			
3	400			
4	440			
5	490			
6	540			
7	590			
8	610			
9	630			

По полученным данным строят график зависимости оптической плотности раствора от длины волны. Для дальнейшей работы выбирают ту длину волны $\lambda_{\text{мах}}$, при которой наблюдается максимум оптической плотности.

2. Измерение оптических плотностей серии стандартных растворов хлорида кобальта

Таблица 2

Оптическ	ие характерист	ики стандартны	х растворов хло	орида кобальта
~~ /				_ 1

№ раствора	С%	A_1	A_2	A _{CP}	$\mathrm{E}_{i}^{\lambda_{max}}$
1					
2					
3					
4					

5

3. Расчет удельного коэффициента поглощения для каждой концентрации стандартного раствора хлорида кобальта $E_i = \frac{A_i}{C_{0k} \cdot l}$

Из пяти рассчитанных значений удельного коэффициента поглощения находят среднее значение $\overline{\rm E} =$

4. Построение градуировочного графика

По данным таблицы 2 строят градуировочный график, откладывая на оси абсцисс концентрацию растворов С (%), а на оси ординат - оптическую плотность А.

- 5. Определение концентрации хлорида кобальта в растворе
 - 1. По градуировочному графику находят концентрацию С (%) анализируемого раствора.
 - 2. Рассчитывают концентрацию анализируемого раствора по значению удельного коэффициента поглощения $E_{1cm}^{1\%}$ $C_{\%}$ =
 - 3. Рассчитывают концентрацию анализируемого раствора по способу стандарта, используя стандартный раствор хлорида кобальта концентрации, близкой к концентрации раствора индивидуального задания (A_{CT} , C_{CT}) $C_x =$

Занятие № 9

ТЕМА: РЕФРАКТОМЕТРИЧЕСКИЙ МЕТОД.

ЦЕЛЬ ЗАНЯТИЯ: закрепить знания обучающихся по рефрактометрическому методу анализа.

ЗАДАЧИ

- 1. Научится работать на рефрактометрах.
- 2. Провести количественное определение индивидуальных веществ рефрактометрическим методом анализа.

ВОПРОСЫ ДЛЯ САМОПОДГОТОВКИ

- 1. Показатель преломления вещества. Определение. Формула.
- 2. Факторы, влияющие на показатель преломления вещества.
- 3. Способы расчета концентрации веществ в рефрактометрии.
- 4. Возможности, достоинства и недостатки рефрактометрического метода.
- 5. Рефрактометрический метод анализа. Сущность и основные понятия.
- 6. Зависимость показателя преломления от различных факторов.
- 7. Возможности, достоинства и недостатки метода.
- 8. Способы определения концентрации вещества (по калибровочному графику, рефрактометрическому фактору и рефрактометрическим таблицам).

ЛИТЕРАТУРА

1. Аналитическая химия : учебное пособие / Т.П. Александрова, А.И. Апарнев, А.А. Казакова, О.В. Карунина. — Новосибирск : Новосибирский государственный технический университет, 2016. — 76 с. — ISBN 978-5-7782-2951-8. — Текст : электронный // Электронно-библиотечная

- система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/91322.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 2. Аналитическая химия: учебное пособие для среднего профессионального образования / А.И. Апарнев, Г. К. Лупенко, Т.П. Александрова, А.А. Казакова. 2-е изд., испр. и доп. Москва: Издательство Юрайт, 2021. 107 с. (Профессиональное образование). ISBN 978-5-534-07838-1. Текст : электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/472472 (дата обращения: 20.07.2021).
- 3. Дроздов, А.А. Химия : учебное пособие для СПО / А.А. Дроздов, М.В. Дроздова. Саратов : Научная книга, 2019. 317 с. ISBN 978-5-9758-1900-0. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87083.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 4. Лупейко, Т.Г. Химия : учебник для СПО / Т.Г. Лупейко, О.В. Дябло, Е.А. Решетникова. Саратов, Москва : Профобразование, Ай Пи Ар Медиа, 2020. 308 с. ISBN 978-5-4488-0433-5, 978-5-4497-0395-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/94217.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей. DOI: https://doi.org/10.23682/94217
- 5. Рябов, М. . Общая, неорганическая и аналитическая химия : конспект лекций / М.А. Рябов, Р.В. Линко. Москва : Российский университет дружбы народов, 2018. 95 с. ISBN 978-5-209-08528-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/104226.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 6. Химия : учебное пособие для СПО / составители Г.Ю. Вострикова, Е.А. Хорохордина. Саратов : Профобразование, 2019. 91 с. ISBN 978-5-4488-0369-7. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/87280.html (дата обращения: 20.07.2021). Режим доступа: для авторизир. пользователей
- 7. Задачник для обучающихся по программам среднего профессионального образования по специальности 33.02.01. «Фармация» // Вихарева Е.В., Курбатова А.А., Колотова Н.В., Колобова М.П., Долбилкина Э.В., Буканова Е.В., Касьянов З.В., Непогодина Е.А. Пермь. 2021. 42 с.

ОСНОВНЫЕ ПОНЯТИЯ И ПОЛОЖЕНИЯ ТЕМЫ

Рефрактометрия — оптический метод анализа, основанный на измерении показателя преломления светового луча исследуемым веществом на границе раздела двух различных оптических сред.

Показателем преломления называют отношение скорости распространения света в воздухе к скорости распространения света в испытуемом веществе.

Различная скорость распространения света в различных средах вызывает изменение его направления при переходе из одной среды в другую, т.е. рефракцию.

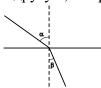


Рис. 4. Характер преломления светового луча на границе раздела двух сред

По известному закону рефракции относительный показатель преломления — постоянная величина для данного вещества, равная отношению синусов угла падения (α) и угла преломления (β) и отношению скоростей распространения света в этих средах: $n = \frac{\sin \alpha}{\sin \beta} = \frac{V_1}{V_2}$

Показатель преломления зависит от факторов, влияющих на скорость распространения света в испытуемом веществе:

- 1. природы вещества, его состава и строения;
- 2. длины волны излучения;
- 3. температуры;
- 4. давления;
- 5. используемого растворителя;
- 6. концентрации вещества.

Наиболее точные результаты получаются при температуре $20\pm0,3^{\circ}$ С. Проведение определений при других температурах требует термостатирования призм рефрактометра или введения поправки. При повышении температуры значения п для большинства веществ уменьшаются, так как уменьшается их плотность, при понижении температуры — увеличиваются. Поэтому вводят поправку на температуру $n_D^{20} = n_D^t - (20-t) \cdot 0.0002$

где $0{,}0002$ - эмпирический коэффициент, показывающий изменение показателя преломления с изменением температуры на 1° C; n_D^t - показатель преломления при температуре t^0 C.

Коэффициент преломления относят к определённой световой волне (спектральная линия D, 1 = 589 нм, жёлтый цвет) и фиксированной температуре.

Для измерения показателя преломления служат приборы — рефрактометры различных марок: рефрактометр Аббе, рефрактометр ИРФ, рефрактометр лабораторный универсальный РЛУ, рефрактометр лабораторный РЛ и др. Конструкции их отличаются расположением осветительной и измерительной призм, устройством отсчётной шкалы, пределами измерений. Все они имеют оптическую систему и отсчётное устройство, снабжены компенсатором, позволяющим проводить измерения при освещении призм дневным и электрическим светом. Точность показаний рефрактометров (юстировку) проверяют с помощью эталонных жидкостей: воды $(n_D^{20}=1,3330)$, хлороформа $(n_D^{20}=1,4490)$, бензола $(n_D^{20}=1,5014)$.

Показатели преломления обычно измеряются с точностью до четвёртого знака после запятой.

Рефрактометрический анализ применяют для обнаружения, определения чистоты и содержания индивидуальных веществ в растворах, а также для анализа двух- и многокомпонентных объектов исследования. Кроме того, рефрактометрия используется для исследования структуры веществ и изучения распределения их электрических дипольных моментов.

Способы определения концентраций в рефрактометрии

- 1. <u>По рефрактометрическим таблицам,</u> в которых приведены значения показателя преломления для растворов различных концентраций. Значения n в таблицах приводятся до третьего знака.
- 2. <u>По градуировочному графику.</u> Для серии стандартных растворов известной концентрации измеряют показатели преломления и строят градуировочный график зависимости показателя преломления от концентрации стандартного раствора. По найденному значению показателя преломления ($n_{\rm X}$) определяют величину искомой концентрации ($C_{\rm X}$).

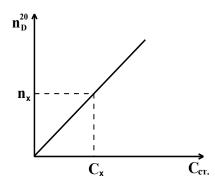


Рис. 5. График зависимости показателя преломления от концентрации стандартного раствора 3. <u>По рефрактометрическому фактору пересчета F.</u> Аналитический фактор пересчета F – величина, показывающая прирост показателя преломления при увеличении концентрации раствора на 1 %.

$$n = n_0 + C \cdot F \qquad \qquad F = \frac{n - n_0}{C} \qquad \qquad C_X = \frac{n_X - n_0}{F} \label{eq:continuous}$$

где: n - показатель преломления раствора вещества заданной концентрации; n_0 - показатель преломления растворителя или первоначального стандарта; n_X - показатель преломления раствора концентрации C_X .

Значения фактора F устанавливают экспериментально, измеряя показатели преломления серии стандартных растворов с известной концентрацией.

Лабораторная работа №1

Тема работы: <u>Рефрактометрическое определение веществ в водных растворах</u>

Объекты анализа: бромид калия, бромид натрия, йодид калия, йодид натрия, хлорид калия, хлорид натрия, хлорид аммония, хлорид кальция, сульфат магния, сульфат меди, борная кислота, гидрокарбонат натрия, тиосульфат натрия, бензоат натрия, салицилат натрия, гексаметилентетрамин, новокаин, сульфацил-натрий.

Методика: в градуированных пробирках готовят 10 разведений 10 % стандартных растворов анализируемых веществ. Открывают призменный блок и промывают призмы рефрактометра водой, вытирают насухо мягкой салфеткой.

На призму рефрактометра наносят несколько капель воды и по шкале находят показатель преломления (проверка работы рефрактометра: $n_D^{20}H_2O=1,3330$), при необходимости по воде устанавливают нулевую точку рефрактометра.

Вытирают призму досуха, наносят на неё несколько капель испытуемого раствора и наводят границу света и тени на центр визирного креста. По шкале находят показатель преломления, проводя определение 2-3 раза с новой порцией раствора, и средний результат заносят в таблицу.

- 1. По полученным данным строят калибровочный график зависимости показателя преломления от концентрации стандартного раствора вещества.
- 2. Рассчитывают рефрактометрический фактор пересчёта для каждой концентрации стандартного раствора $F = \frac{n_{CT} n_0}{C_{CT}}$
- 3. Рассчитывают среднее значение рефрактометрического фактора пересчёта анализируемого вещества $\overline{F} = \frac{1}{n} \sum_{i=1}^{i=n} F_i$
- 4. Измеряют показатель преломления раствора неизвестной концентрации вещества и определяют концентрацию по:
- градуировочному графику;
- рефрактометрическому фактору пересчёта $C_{X}=rac{n_{X}-n_{0}}{\overline{F}}$

- рефрактометрическим таблицам показателей преломления веществ.

ПРИМЕР РЕШЕНИЯ ЗАДАЧ

<u>Пример 3.</u> Показатель преломления раствора шестиводного хлорида кальция равен 1,3445 при 20 °C. Определите процентную концентрацию раствора.

Решение:

1. По таблице значение $n_D^{20}=1,3445$ находится между $n_I=1,3440$ и $n_2=1,3450$. Следовательно концентрация раствора больше 9,5%, но меньше 10,4%. Рассчитывают рефрактометрический фактор

$$F = \frac{n_1 - n_2}{c_2 - c_1} = \frac{1,3450 - 1,3440}{10,4 - 9,5} = 0,00111$$

2. Затем определяют концентрацию:

$$C_X = \frac{n_x - n_0}{F} = \frac{1,3445 - 1,3330}{0.00111} = 10,45\%$$

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. Рассчитайте молярную концентрацию йодида натрия в водном растворе, если при рефрактометрическом определении показатель преломления раствора при $20~^{0}$ C равен 1,3616, F=0,00143, $p=1,220~r/cm^{3}$.
- 2. Рассчитайте процентную концентрацию бромида натрия в водном растворе, если при рефрактометрическом определении при $20~^{0}$ С показатель преломления равен 1,3462 (F=0,00132).
- 3. Рассчитайте процентную концентрацию бромида натрия в водном растворе при $20\,^{0}$ С, если при рефрактометрическом определении показатель преломления раствора равен 1,3462 (F=0,00132).
- 4. Показатели преломления аскорбиновой кислоты n^{20} с концентрациями 4,44% и 6,36% равны соответственно 1,3400 и 1,3430. Для анализируемого раствора $n^{\circ}=1,3420$. Рассчитайте содержание аскорбиновой кислоты в исследуемом растворе.
- 5. Рассчитайте концентрацию раствора калия хлорида, если при 20 °C показатель преломления его раствора равен 1,3460, а рефрактометрический фактор пересчёта 0,00130.
- 6. Рассчитайте рефрактометрический фактор раствора йодида калия, если при $20\,^{\circ}$ С показатели преломления его 1%, 5%, 10%, 15%, 20% растворов равны соответственно 1,3343; 1,3395; 1,3460; 1,3525; 1,3590.
- 7. Рассчитайте рефрактометрический фактор показателя преломления раствора калия хлорида, если при 20 $^{\circ}$ C показатели преломления его 1%, 5%, 10%-ных водных растворов соответственно равны 1,3344; 1,3396; 1,3460.
- 8. Рассчитайте молярную концентрацию семиводного сульфата магния ($M_{\rm Mgso4*7H2o}=246,48$ г/моль) в водном растворе, если при рефрактометрическом определении показатель преломления раствора при 20 °C равен 1,3670, F=0,00085, p=1,320 г/см³.

СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. На основании данных рефрактометрического анализа заполнить протоколы.
- 2. Решить задачи на рефрактометрическое определение.

Протокол № 10

Тема работы: Рефрактометрическое определение концентрации веществ в водных растворах

Объекты анализа: бромид калия, бромид натрия, йодид калия, йодид натрия, хлорид калия, хлорид натрия, хлорид аммония, хлорид кальция, сульфат магния, сульфат меди, борная кислота, гидрокарбонат натрия, тиосульфат натрия, бензоат натрия, салицилат натрия, гексаметилентетрамин, новокаин, сульфацил-натрий.

Последовательность действий

1. Измерение показателя преломления анализируемого раствора

 Таблица 3

 Результаты измерения показателя преломления и расчёт фактора пересчёта

Объём стандартного	Объём воды,	Концентрация вещества в полученном	n_D^{20}	F_{i}
раствора, см ³	cm ³	разведении, %	n_D	Γj
1	9	1		
2	8	2		
3	7	3		
4	6	4		
5	5	5		
6	4	6		
7	3	7		
8	2	8		
9	1	9		
10	0	10		

Расчет рефрактометрического фактора пересчёта для каждой концентрации стандартного раствора $F = \frac{n_{\text{ст}} - n_0}{C_{\text{cr}}}$

Из полученных десяти значений рассчитывают среднее значение рефрактометрического фактора пересчёта анализируемого вещества $\overline{F}=$

2. Построение градуировочного графика.

По полученным данным таблицы 3 строят градуировочный график зависимости показателя преломления от концентрации стандартного раствора вещества.

- 3. Измерение показатель преломления раствора вещества неизвестной концентрации
- 4. Определение концентрации раствора вещества неизвестной концентрации:
- По градуировочному графику находят концентрацию С (%) анализируемого раствора.
- Расчет концентрации раствора вещества с использованием рефрактометрического фактора пересчёта $C_{\rm x} =$
- 3. Расчет концентрации раствора вещества с использованием рефрактометрических таблиц по показателей преломления.

Занятие № 10

ТЕМА: ИТОГОВОЕ КОНТРОЛЬНОЕ ЗАНЯТИЕ ПО ДИСЦИПЛИНЕ «АНАЛИТИЧЕСКАЯ ХИМИЯ»

ЦЕЛЬ ЗАНЯТИЯ: закрепить теоретические знания и навыки студентов по теме «Аналитическая химия».

Тематика контрольных вопросов для подготовки к собеседованию

Раздел КАЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ СОЕДИНЕНИЯ

ПЕРЕЧЕНЬ ИЗУЧАЕМЫХ ВЕЩЕСТВ: ацетат натрия, бромид кальция, хлорид кальция, сульфат меди (II), хлорид натрия, иодид калия, иодид натрия, карбонат кальция, сульфат цинка, ацетат железа (II), бензоат натрия, бромид натрия, хлорид магния, хлорид калия, хлорид цинка, салицилат натрия, хлорид висмута, сульфат магния, сульфат железа (III), тиосульфат натрия.

- 1. Качественный анализ катиона соединения (привести уравнения реакций обнаружения с указанием способа выполнения, условий проведения и аналитического сигнала).
- 2. Качественный анализ аниона соединения (привести уравнения реакций обнаружения с указанием способа выполнения, условий проведения и аналитического сигнала. ОВР уравнивать ионно-электронным методом).

Раздел КОЛИЧЕСТВЕННЫЙ ХИМИЧЕСКИЙ АНАЛИЗ СОЕДИНЕНИЯ

Количественное определение соединения методом нейтрализации (или комплексонометрическим методом, аргентометическим методом Мора (или Фаянса-Ходакова, Фольгарда), перманганатометрическим методом, иодометрическим методом) (определение метода, на каких свойствах вещества основан метод, титрованные растворы метода, вариант титрования, индикация конечной точки титрования, основное уравнение метода, формулы расчета массы и массовой доли вещества в анализируемом образце).

Раздел КОЛИЧЕСТВЕННЫЙ ИНСТРУМЕНТАЛЬНЫЙ АНАЛИЗ СОЕДИНЕНИЯ

- 1. Количественное определение соединения фотоколориметрическим методом (определение метода, на чем основан метод, написать уравнение реакции, указать последовательность операций при выполнении работы, электронный спектр, градуировочный график, способы расчета концентрации).
- 2. Рефрактометрическое определение соединения в водном растворе (определение метода, его обоснование, способы расчета концентрации вещества).

Раздел РЕШЕНИЕ ЗАДАЧИ

- 1. Рассчитать массовую долю оксида ртути (II) в образце, если к навеске массой $0,1020~\rm r$ добавили $20~\rm cm^3$ воды и $1~\rm r$ йодида калия, выделившийся гидроксид калия оттитровали в присутствии метилового оранжевого $9,23~\rm cm^3$ раствора хлороводородной кислоты с концентрацией $0,1~\rm monb/дm^3$ и коэффициентом поправки 0,9800.
- 2. К 0,2500 г образца, содержащего оксид кальция, добавили 35,00 см 3 0,1500 моль/дм 3 раствора соляной кислоты. Избыток кислоты оттитровали 8,50 см 3 раствора гидроксида натрия, титр которого 0,008750 г/см 3 . Рассчитайте массовую долю (%) оксида кальция в навеске.
- 3. Навеску 2,0000 г раствора пероксида водорода поместили в мерную колбу объемом 200,00 см 3 и довели водой до метки. На титрование 10,00 см 3 этого раствора израсходовали 15,00 см 3 0,1 моль/дм 3 раствора перманганата калия с Кп = 1,0050. Рассчитайте массовую долю (%) пероксида водорода в растворе.
- 4. На титрование ионов железа (II) в растворе, полученном из лактата железа массой 0,2115 г, израсходовали 22,50 см³ раствора перманганата калия с молярной концентрацией эквивалента 0,1000 моль/дм³. Рассчитайте массовую долю (%) ионов железа (II) в препарате.
- 5. Рассчитайте молярную концентрацию, молярную концентрацию эквивалента и титр раствора щавелевой кислоты, если на титрование $20,00 \text{ см}^3$ этого раствора израсходовано $12,00 \text{ см}^3$ раствора перманганата калия с титром $0,01580 \text{ г/см}^3$.
- 6. К раствору 0,3850 г вещества, содержащего хлориды, прибавили 25,05 см³ 0,1200 моль/дм³

раствора нитрата серебра. На титрование остатка нитрата серебра израсходовали $3,50 \text{ см}^3 0,1120 \text{ моль/дм}^3$ раствора тиоцианата аммония. Рассчитайте массовую долю (%) хлорид-ионов в навеске вещества.

- 7. Рассчитайте массовую долю хлорид-ионов в образце, если к 0,2266 г хлорида натрия добавили $30,00~{\rm cm}^3$ нитрата серебра с молярной концентрацией эквивалента $0,1121~{\rm моль/дm}^3$, остаток которого оттитровали $15,00~{\rm cm}^3~0,1~{\rm моль/дm}^3$ раствора тиоцианата аммония с $K_\pi=1,1580$.
- 8. Рассчитайте массовую долю сульфата меди (II) в образце, если к его навеске $0,6100 \,\mathrm{r}$ прилили $20,00 \,\mathrm{cm}^3 \,0,0500 \,\mathrm{моль/дm}^3$ раствора трилона Б, а на титровании остатка трилона Б израсходовано $7,05 \,\mathrm{cm}^3 \,0,0500 \,\mathrm{моль/дm}^3$ сульфата цинка.
- 9. Рассчитайте массовую долю бензоата натрия в образце, если при ацидиметрическом определении его на навеску массой 1,5002 г израсходовали 20,20 см 3 0,5 моль/дм 3 раствора хлороводородной кислоты с $K_{\Pi}=0,9982$.
- 10. К раствору соли свинца (II) добавили 15,20 см 3 0,1100 моль/дм 3 раствора трилона Б, избыток которого оттитровали 3,00 см 3 0,1000 моль/дм 3 раствора соли магния (II). Рассчитайте массу ионов свинца (II) в растворе.
- 11. Рассчитайте массовую долю (%) йода в растворе, если на титрование 5,00 см 3 его ирасходовали 12,00 см 3 раствора тиосульфата натрия с молярной концентрацией эквивалента 0,1 моль/дм 3 и $K_\pi=0,9952$.
- 12. Навеску технического хлорида железа (III) массой 8,0000 г растворили в мерной колбе объемом $100,00~{\rm cm}^3$. К $20,00~{\rm cm}^3$ полученного раствора добавили йодид калия, кислоту и выделившийся йод оттитровали $22,10~{\rm cm}^3~0,1~{\rm моль/дm}^3$ раствором тиосульфата натрия с $K_{\rm п}=0,9856$. Вычислить массовую долю (%) хлорида железа (III) в образце.
- 13. Навеска 0,5000~г дихромата калия обработана в кислой среде раствором иодида калия, выделившийся йод оттитрован 18,13~ см $^3~0,01~$ моль/дм $^3~$ раствора тиосульфата натрия с $K_\pi=1,1051.$ Вычислите массовую долю дихромата калия в образце.
- 14. Рассчитайте массовую долю карбоната кальция, если к навеске 0,2000 г добавили 20,00 см³ 0,2 моль/дм³ раствора хлороводородной кислоты с $K_{\pi} = 0,9940$. Остаток кислоты оттитровали 6,50 см³ раствора гидроксида натрия с концентрацией 0,2 моль/дм³ и $K_{\pi} = 1,0156$.
- 15. К 10,00 см³ раствора сероводорода добавили 30,00 см³ 0,1000 моль/дм³ раствора йода, избыток йода оттитровали 15,00 см³ 0,1 моль/дм³ раствора тиосульфата натрия с $K_{\pi}=1,0030$. Вычислите массовую долю (%) сероводорода в образце.
- 16. Навеску сульфата цинка 1,2150 г растворили в мерной колбе на 100,00 см 3 . На титрование 15,00 см 3 этого раствора израсходовали 10,20 см 3 0,1 моль/дм 3 раствора трилона Б с $K_{\rm n}=1,0200$. Рассчитайте массовую долю ионов цинка в образце.
- 17. Навеску 6,7000 г технического хлорида бария растворили в мерной колбе емкостью 1000,00 см³. На титрование 25,00 см³ раствора израсходовали 28,95 см³ раствора нитрата серебра с $T_{AgNO3} = 0,008048$ г/см³. Рассчитайте массовую долю хлорид иона в образце.
- 18. 0,9400 г сульфида натрия растворили в мерной колбе вместимостью 200,00 см³. На титрование 20,00 см³ этого раствора израсходовали 15,00 см³ раствора йода с T=0,01397 г/см³. Рассчитайте массовую долю сульфида натрия в образце.
- 19. Навеску 2,4080 г технического хлорид натрия растворили в мерной колбе объемом 500,00 см³. На титрование 25,00 см³ раствора израсходовали 20,35 см³ 0,1 моль/дм³ раствора нитрата серебра с Кп = 0,9860. Рассчитайте массовую долю (%) хлорид-ионов в исходной соли.
- 20. Рассчитайте массу и массовую долю хлорида магния в образце, если на навеску его 0,2842 г израсходовали 14,25 см³ 0,2 моль/дм³ раствора трилона Б с $K_{\pi} = 0,9820$.

ПРИМЕР БИЛЕТА

Билет

I. Проведите качественный, количественный химический и инструментальный метод анализ соединения

Соединение: хлорид аммония

- 1. Качественный химический анализ соединения
- 1.1. Качественный анализ катиона соединения (привести уравнения реакций обнаружения с указанием способа выполнения, условий проведения и аналитического сигнала).
- 1.2. Качественный анализ аниона соединения (привести уравнения реакций обнаружения с указанием способа выполнения, условий проведения и аналитического сигнала. ОВР уравнивать ионно-электронным методом).
- 2. Количественный химический анализ соединения

Количественное определение соединения аргентометрическим титрованием методом Мора (определение метода, на каких свойствах вещества основан метод, титрант метода, вариант и условия проведения титрования, индикация конечной точки титрования, написать уравнение реакции, формулы расчета массы и массовой доли вещества в анализируемом образце).

3. Количественный инструментальный анализ соединения

Рефрактометрическое определение соединения в водном растворе (определение метода, его обоснование, установление нулевой точки рефрактометра, способы расчета концентрации).

II. Решить задачу

Навеску 2,0000 г раствора пероксида водорода поместили в мерную колбу объемом 200,00 см3 и довели водой до метки. На титрование 10,00 см3 этого раствора израсходовали 15,00 см3 0,1 моль/дм3 раствора перманганата калия с Кп = 1,0050. Рассчитайте массовую долю (%) пероксида водорода в растворе и приведите условия его хранения.